CHAPTER

SIX

COMPARATIVE STATICS
AND THE CONCEPT OF DERIVATIVE

The present and the two following chapters will be devoted to the methods of
comparative-static analysis.

6.1 THE NATURE OF COMPARATIVE STATICS

Comparative statics, as the name suggests, is concerned with the comparison of
different equilibrium states that are associated with different sets of values of
parameters and exogenous variables. For purposes of such a comparison, we
always start by assuming a given initial equilibrium state. In the isolated-market
model, for example, such an initial equilibrium will be represented by a de-
terminate price P and a corresponding quantity Q. Similarly, in the simple
national-income model of (3.23), the initial equilibrium will be specified by a
determinate Y and a corresponding C. Now if we let a disequilibrating change
occur in the model—in the form of a variation in the value of some parameter or
exogenous variable—the initial equilibrium will, of course, be upset. As a result,
the various endogenous variables must undergo certain adjustments. If it is
assumed that a new equilibrium state relevant to the new values of the data can
be defined and attained, the question posed in the comparative-static analysis is:
How would the new equilibrium compare with the old?

It should be noted that in comparative statics we again disregard the process
of adjustment of the variables; we merely compare the initial ( prechange)
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128 COMPARATIVE-STATIC ANALYSIS

equilibrium state with the final ( postchange) equilibrium state. Also, we again
preclude the possibility of instability of equilibrium, for we assume the new
equilibrium to be attainable, just as we do for the old.

A comparative-static analysis can be either qualitative or quantitative in
nature. If we are interested only in the question of, say, whether an increase in
investment /,, will increase or decrease the equilibrium income Y, the analysis will
be qualitative because the direction of change is the only matter considered. But if
we are concerned with the magnitude of the change in Y resulting from a given
change in I, (that is, the size of the investment multiplier), the analysis will
obviously be quantitative. By obtaining a quantitative answer, however, we can
automatically tell the direction of change from its algebraic sign. Hence the
quantitative analysis always embraces the qualitative.

It should be clear that the problem under consideration is essentially one of
finding a rate of change: the rate of change of the equilibrium value of an
endogenous variable with respect to the change in a particular parameter or_
exogenous variable. For this reason, the mathematical concept of derivative takes
on preponderant significance in comparative statics, because that concept—the
most fundamental one in the branch of mathematics known as differential calculus
— 1s directly concerned with the notion of rate of change! Later on, moreover, we
shall find the concept of derivative to be of extreme importance for optimization
problems as well. ’

6.2 RATE OF CHANGE AND THE DERIVATIVE

Even though our present context is concerned only with the rates of change of the
equilibrium values of the variables in a model, we may carry on the discussion in
a more general manner by considering the rate of change of any variable y in
response to a change in another variable x, where the two variables are related to
each other by the function

~y=fx) O

Applied in the comparative-static context, the variable y will represent the
equilibrium value of an endogenous variable, and x will be some parameter. Note
that, for a start, we are restricting ourselves to the simple case where there is only
a single parameter or exogenous variable in the model. Once we have mastered
this simplified case, however, the extension to the case of more parameters will
prove relatively easy.

The Difference Quotient

Since the notion of “change” figures prominently in the present context, a special
symbol is needed to represent it. When the variable x changes from the value x,
to a new value x|, the change is measured by the difference x, — x,. Hence, using

the symbol A (the Greek capital delta, for “difference”) to denote the change, we

/



COMPARATIVE STATICS AND THE CONCEPT OF DERIVATIVE 129

write Ax = x; — x,. Also needed is a way of denoting the value of the function
f(x) at various values of x. The standard practice is to use the notation f(x;) to
represent the value of f(x) when x = x,. Thus, for the function f(x) =5 + x2,
we have f(0) = 5 + 0% = §; and similarly, f2) = 5 + 22 =9, etc.

When x changes from an initial value x, to a new value (x, + Ax), the value
of the function y = f(x) changes from f(x,) to f(x, + Ax). The change in y per
unit of change in x can be represented by the difference quotient o

(6.1) i_i.=f(x0+ﬂ§x)‘—f(xw

This quotient, which measures the average rate of change of y, can be calculated if
we know the initial value of x, or x,, and the magnitude of change in x, or Ax.
That is, Ay /Ax is a function of xy, and Ax.

A e m—

!
Example 1 Giveny = f(x) = 3x? — 4, we can write: ~ /(X) = ¢ X t3ax
f(x,) = 3(x0)2—4 f(x0+Ax)=3(x0+Ax)2f4

Therefore, the difference quotient is

(6.2) Ax _ CAx Ax

‘= 6x, + 3Ax T

which can be evaluated if we are given x, and Ax. Let x, = 3 and Ax = 4; then
the average rate of change of y will be 6(3) + 3(4) = 30. This means that, on the
average, as x changes from 3 to 7, the change in y is 30 units per unit change in x.

The Derivative

Frequently, we are interested in the rate of change of y when Ax is very small. In
such a case, it is possible to obtain an approximation of A y/Ax by dropping all
the terms in the difference quotient involving the expression Ax. In (6.2), for
instance, if Ax is very small, we may simply take the term 6x, on the right as an
approximation of A y /Ax. The smaller the value of Ax, of course, the closer is the
approximation to the true value of Ay/Ax.

As Ax approaches zero (meaning that it gets closer and closer to, but never
actually reaches, zero), (6x, + 3Ax) will approach the value 6x,, and by the
same token, Ay/Ax will approach 6x, also. Symbolically, this fact is expressed
either by the statement Ay/Ax — 6x, as Ax — 0, or by the equation

7 Ay ) B AT
(6.3) . Al;rllo A Al;rllo (6xy + 3Ax) = 6x0)

where the symbol lim is read: “The limit of... as Ax approaches 0.” If, as

Ax—0
Ax — 0, the limit of ‘the difference quotient Ay /A x exists, that limit is identified
as the derivative of the function y = f(x).

'M_3(xo+Ax)z—4—(3x§-4) 6x0Ax+3(Ax)2\’ X7 /l,; ‘27/3;,
- - KA
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Several points should be noted about the derivative. First, a derivative is a
function; in fact, in this usage the word derivative really means a derived function.
‘The original function y = f(x) is a primitive function, and the derivative is
another function derived from it. Whereas the difference quotient is a function of
xo and Ax, you should observe—from (6.3), for instance— that the derivative is a
function of x, only. This is because Ax is already compelled to approach zero,
and therefore it should not be regarded as another variable in the function. Let us
also add that so far we have used the subscripted symbol x, only in order to stress
the fact that a change in x must start from some specific value of x. Now that this

is understood, we may delete the subscript and simply state that the derivative,

like the primitive function, is itself a function of the independent variable x. That
is, for each value of x, there is a unique corresponding value for the derivative
function.

Second, since the derivative is merely a limit of the difference quotient, which
measures a rate of change of y, the derivative must of necessity also be a measure
of some rate of change. In view of the fact that the change in x envisaged in the
derivative concept is infinitesimal (that is, Ax — 0), however, the rate measured
by the derivative is in the nature of an instantaneous rate of change.
" Third, there is the matter of notation. Derivative functions are commonly
denoted in two ways. Given a primitive function y = f(x), one way of denoting
its derivative (if it exists) is to use the symbol /" (x), or simply f’; this notation is
attributed to the mathematician Lagrange. The other common notation is dy/dx,
devised by the mathematician Leibniz. [Actually there is a third notation, Dy, or
Df(x), but we shall not use it in the following discussion.] The notation f'(x),
which resembles the notation for the primitive function f(x), has the advantage of
conveying the idea that the derivative is itself a function of x. The reason for
expressing it as f’(x)—rather than, say, ¢(x)—is to emphasize that the function
f’ is derived from the primitive function f. The alternative notation, dy/dx, serves
instead to emphasize that the value of a derivative measures a rate of change. The
letter d is the counterpart of the Greek A, and dy/dx differs from Ay/Ax chiefly
in that the former is the limit of the latter as Ax approaches zero. In the
subsequent discussion, we shall use both of these notations, depending on which
seems the more convenient in a particular context.

Using these two notations, we may define the derivative of a given function
y = f(x) as follows:

d ., _ .. Ay

ax =f'x) = Jim 75
Example 2 Referring to the function y = 3x> — 4 again, we have shown its
difference quotient to be (6.2), and the limit of that quotient to be (6.3). On the
basis of the latter, we may now write (replacing x, with x):

dy
dx

Note that different values of x will give the derivative correspondingly different

=6x or f'(x)=6x
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values. For instance, when x = 3, we have f'(x) = 6(3) = 18; but when x = 4, we
find that f'(4) = 6(4) = 24.

EXERCISE 6.2

1 Given the functiony = 4x? + 9:
(a) Find the difference quotient as a function of x and Ax. (Use x in lieu of x,).
(b) Find the derivative dy /dx.
(¢) Find f'(3) and f'(4).
2 Given the function y = 5x? — 4x:
(a) Find the difference quotient as a function of x and Ax.
(b) Find the derivative dy/dx.
(¢) Find f'(2) and f'(3).

3 Given the function y = 5x — 2:

(a) Find the difference quotient A y/Ax. What type of function is it?

(b) Since the expression Ax does not appear in the function Ay/Ax above, does it
make any difference to the value of Ay/Ax whether Ax is large or small? Consequently,
what is the limit of the difference quotient as Ax approaches zero?

6.3 THE DERIVATIVE AND THE SLOPE OF A CURVE

Elementary economics t€lls us that, given a total-cost function C = f(Q), where C
denotes total cost and Q the output, the marginal cost (MC) is defined as the
change in total cost resulting from a unit increase in output; that is, MC =
AC/AQ. It is understood that AQ is an extremely small change. For the case of a
product that has discrete units (integers only), a change of one unit is the smallest
change possible; but for the case of a product whose quantity is a continuous
variable, AQ will refer to an infinitesimal change. In this latter case, it is well
known that the marginal cost can be measured by the slope of the total- cost
curve. But the slope of the total-cost curve is nothing but the limit of the ratio -~
AC/AQ, when AQ approaches zero. Thus the concept of the slope of a curve is
merely the geometric counterpart of the concept of the derivative. Both have to do
with the “marginal” notion so extensively used in economics.

In Fig. 6.1, we have drawn a total-cost curve C, which is the graph of the
(primitive) function C = f(Q). Suppose that we consider Q, as the initial output
level from which an increase in output is measured, then the relevant point on the
cost curve will be 4. If output is to be raised to Q, + AQ = Q,, the total cost will
be increased from Gy to Cy + AC_)— C,; thus AC/AQ = (C, — CO)/(Q2 QO)
Geometrically, this is the ratio of two line segments, EB/AE, or the slope of the
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Figure 6.1

marginal cost for the particular AQ pictured—and represents a difference quo-
tient. As such, it is a function of the initial value Q, and the amount of change
AQ.

What happens when we vary the magnitude of AQ? If a smaller output
increment is contemplated (say, from Q, to Q, only), then the average marginal
cost will be measured by the slope of the line 4D instead. Moreover, as we reduce
the output increment further and further, flatter and flatter lines will result until,
in the limit (as AQ — 0), we obtain the line KG (which is the tangent line to the
cost curve at point A) as the relevant line. The slope of KG(= HG/KH)
measures the slope of the total-cost curve at point A and represents the limit of
AC/AQ, as AQ — 0, when initial output is at Q = Q. Therefore, in terms of the
derivative, the slope of the C = f(Q) curve at point A corresponds to the
particular derivative value f'(Q,).

What if the initial output level is changed from Q, to, say, Q,? In that case,
point B on the curve will replace point A as the relevant point, and the slope of
the curve at the new point B will give us the derivative value f'(Q,). Analogous
results are obtainable for alternative initial output levels. In general, the derlvatlve
f (Q)—a function of Q—will vary as Q changes.

6.4 THE CONCEPT OF LIMIT

The derivative dy/dx has been defined as the limit of the difference quotient
Ay/Ax as Ax — 0. If we adopt the shorthand symbols ¢ = Ay/Ax (g for
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quotient) and v = Ax (v for variation), we have

dy .. Ay _ .
dx—AliToAx l}l_r.r})q

In view of the fact that the derivative concept relies heavily on the notion of limit,
it is imperative that we get a clear idea about that notion.

Left-Side Limit and Right-Side Limit

The concept of limit is concerned with the question: “What value does one
variable (say, ¢q) approach as another variable (say, v) approaches a specific value
(say, zero)?” In order for this question to make sense, ¢ must, of course, be a
function of v; say, ¢ = g(v). Our immediate interest is in finding the limit of g as
v — 0, but we may just as easily explore the more general case of v = N, where N
is any finite real number. Then, lim g will be merely a special case of lim g

where N = 0. In the course of thev&is()cussion, we shall actually also considlé;ﬁ/]e
limit of ¢ as v —» + oo (plus infinity) or as v = — oo (minus infinity).

When we say v — N, the variable v can approach the number N either from
values greater than N, or from values less than N. If, as v = N from the left side
(from values less than N), g approaches a finite number L, we call L the left-side
limit of g. On the other hand, if L is the number that g tends to as v = N from
the right side (from values greater than N ), we call L the right-side limit of g. The
left- and right-side limits may or may not be equal.

The left-side limit of g is symbolized by lim g (the minus sign signifies from
values less than N), and the right-side limi(i_;stritten as DEI;/l+ q. When—and
only when—the two limits have a common finite value (say, L), we consider the
limit of g to exist and write it as lim g = L. Note that L must be a finite number.
If we have the situation of lim qD; ’;o (or — o0), we shall consider g to possess no
limit, because lim g = oouglgans that ¢ » oo as v = N, and if g will assume '
ever-increasing sf;iﬁles as v tends to N, it would be contradictory to say that g has

a limit. As a convenient way of expressing the fact that ¢ - o0 as v = N,
however, people do indeed write lim ¢ = oo and speak of g as having an
“infinite limit.”. omN
" In certain cases, only the limit of one side needs to be considered. In taking
the limit of g as v = + oo, for instance, only the left-side limit of g is relevant,
because v can approach +oo only from the left. Similarly, for the case of
v = — o0, only the right-side limit is relevant. Whether the limit of ¢ exists in
these cases will depend only on whether g approaches a finite value as v = + oo,
orasv — —oo.
It is important to realize that the symbol oo (infinity) is not a number, and
therefore it cannot be subjected to the usual algebraic operations. We cannot have
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3+ o or 1/00; nor can we write ¢ = oo, which is not the same as g — oo.
However, it is acceptable to express the /imit of g as “ = ” (as against =) oo, for
this merely indicates that ¢ — oo.

Graphical Illustrations

Let us illustrate, in Fig. 6.2, several possible situations regarding the limit of a
function g = g(v).

Figure 6.2a shows a smooth curve. As the variable v tends to the value N
from either side on the horizontal axis, the variable g tends to the value L. In this
case, the left-side limit is identical with the right-side limit; therefore we can write

limg=L.

lHNThe curve drawn in Fig. 6.2b is not smooth; it has a sharp turning point
directly above the point N. Nevertheless, as v tends to N from either side, g again
tends to an identical value L. The limit of ¢ again exists and is equal to L.

Figure 6.2¢ shows what is known as a step function.* In this case, as v tends
to N, the left-side limit of ¢ is L,, but the right-side limit is L,, a different
number. Hence, g does not have a limit asv — N.

Lastly, in Fig. 6.24d, as v tends to N, the left-side limit of q is — co, whereas
the right-side limit is + oo, because the two parts of the (hyperbolic) curve will
fall and rise indefinitely while approaching the broken vertical line as an asymp-
tote. Again, lim g does not exist. On the other hand, if we are considering a

v—-N
different sort of limit in diagram d, namely, lim g, then only the left-side limit
— + 00

has relevance, and we do find that limit to exist:  lim q = M. Analogously, you
can verify that lim ¢ = M as well. v T

It is also pogsibléO to apply the concepts of left-side and right-side limits to the
discussion of the marginal cost in Fig. 6.1. In that context, the variables g and v
will refer, respectively, to the quotient AC/AQ and to the magnitude of AQ, with
all changes being measured from point 4 on the curve. In other words, g will refer
to the slope of such lines as AB, AD, and KG, whereas v will refer to the length of
such lines as Q,0, (= line AE) and Q,Q, (= line AF). We have already seen
that, as v approaches zero from a positive value, g will approach a value equal to
the slope of line KG. Similarly, we can establish that, if AQ approaches zero from

. * This name is easily explained by the shape of the curve. But step functions can be expressed
algebraically, too. The one illustrated in Fig. 6.2¢ can be expressed by the equation

L, (for0 < v < N)
7= L, (for N < v)

Note that, in each subset of its domain described above, the function appears as a distinct constant
function, which constitutes a “step” in the graph.

In economics, step functions can be used, for instance, to skow the various prices charged for
different quantities purchased (the curve shown in Fig. 6.2¢ pictures quantity discount) or the various
tax rates applicable to different income brackets.
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a negative value (i.e., as the decrease in output becomes less and less), the quotient
AC/AQ, as measured by the slope of such lines as R4 (not drawn), will also
approach a value equal to the slope of line KG. Indeed, the situation here is very
much akin to that illustrated in Fig. 6.2a. Thus the slope of KG in Fig. 6.1 (the
counterpart of L in Fig. 6.2) is indeed the limit of the quotient g as v tends to
zero, and as such it gives us the marginal cost at the output level Q = Q,.
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Evaluation of a Limit

Let us now illustrate the algebraic evaluation of a limit of a given function
q = g(v).

Example 1 Given g =2 + v?, find lirr}) g. To take the left-side limit, we sub-
Lv—

stitute the series of negative values — 1, — 5, — 7%5,... (in that order) for v and
find that (2 + v?) will decrease steadily and approach 2 (because v? will gradually
approach 0). Next, for the right-side limit, we substitute the series of positive
values 1,5, 7%,... (in that order) for v and find the same limit as before.
Inasmuch as the two limits are identical, we consider the limit of g to exist and

write lim g = 2.
v—0

It is tempting to regard the answer just obtained as the outcome of setting
v =0 in the equation ¢ =2 + v?, but this temptation should in general be
resisted. In evaluating lim g, we only let v rend to N but, as a rule, do not let

- N
v = N. Indeed, we can auite legitimately speak of the limit of g as v — N, even if
N is not in the domain of the function ¢ = g(v). In this latter case, if we try to set
v = N, g will clearly be undefined.

Example 2 Given g = (1 — v?)/(1 — v), find lim ¢. Here, N = 1 is not in the
v

domain of the function, and we cannot set v = 1 because that would involve
division by zero. Moreover, even the limit-evaluation procedure of letting v — 1,
as used in Example 1, will cause difficulty, for the denominator (1 — v) will
approach zero when v = 1, and we will still have no way of performing the
division in the limit.

One way out of this difficulty is to try to transform the given ratio to a form
in which v will not appear in the denominator. Since v — 1 implies that v # 1, so
that (1 — v) is nonzero, it is legitimate to divide the expression (1 — v?) by
(1 = v), and write*

1 — v?
l_

q= =1+ (v#1)

* The division can be performed, as in the case of numbers, in the following manner:

l+v

1 -voll -0’
l-v

v -0

0—02

Alternatively, we may resort to factoring as follows:

1-02  (1+0)(1-0)
1-v I1-v

=1+v (v#1)
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In this new expression for g, there is no longer a denominator with v in it. Since
(1 + v) = 2 as v = 1 from either side, we may then conclude that lim g = 2.

v—1

Example 3 Given ¢ = (2v + 5)/(v + 1), find lim g¢q. The variable v again

appears in both the numerator and the d(=,nominatvor.+lto"o we let v = + 00 in both,
the result will be a ratio between two infinitely large numbers, which does not
have a clear meaning. To get out of the difficulty, we try this time to transform
the given ratio to a form in which the variable v will not appear in the
numerator.* This, again, can be accomplished by dividing out the given ratio.
Since (2v + 5) is not evenly divisible by (v + 1), however, the result will contain
a remainder term as follows:

_20+5 3

v+ 1 -2+v+1

But, at any rate, this new expression for ¢ no longer has a numerator with v in it.
Noting that the remainder 3/(v + 1) » 0 as v > + 00, we can then conclude
that lim g = 2.

v +00

There also exist several useful theorems on the evaluation of limits. These will
be discussed in Sec. 6.6.

Formal View of the Limit Concept

The above discussion should have conveyed some general ideas about the concept
of limit. Let us now give it a more precise definition. Since such a definition will
make use of the concept of neighborhood of a point on a line (in particular, a
specific number as a point on the line of real numbers), we shall first explain the
latter term.

For a given number L, there can always be found a number (L — a;) < L
and another number (L + a,) > L, where a, and a, are some arbitrary positive
numbers. The set of all numbers falling between (L — a,) and (L + a,) is called
the interval between those two numbers. If the numbers (L — a,) and (L + a,)
are included in the set, the set is a closed interval; if they are excluded, the set is
an open interval. A closed interval between (L — a,) and (L + a;) is denoted by
the bracketed expression

[L-a,L+a)]={q|L—-a <qg<L+a,)
and the corresponding open interval is denoted with parentheses:
(64) (L-a,L+a,)={q|L-a <qg<L+a,)

* Note that, unlike the v — 0 case, where we want to take v out of the denominator in order to
avoid division by zero, the v = oo case is better served by taking v out of the numerator. As v = o,

an expression containing v in the numerator will become infinite but an expression with v in the
denominator will, more conveniently for us, approach zero and quietly vanish from the scene.
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Thus, [ ] relate to the weak inequality sign <, whereas ( ) relate to the strict
inequality sign < . But in both types of intervals, the smaller number (L — a,) is
always listed first. Later on, we shall also have occasion to refer to half-open and
half-closed intervals such as (3, 5] and [6, c0), which have the following meanings:

(3.,5]={(x13<x<5 [6,0)={x]6<x< o)

Now we may define a neighborhood of L to be an open interval as defined in
(6.4), which is an interval “covering” the number L.* Depending on the magni-
tudes of the arbitrary numbers a, and a,, it is possible to construct various
neighborhoods for the given number L. Using the concept of neighborhood, the
limit of a function may then be defined as follows:

As v approaches a number N, the limit of ¢ = g(v) is the number L, if, for
every neighborhood of L that can be chosen, however small, there can be
found a corresponding neighborhood of N (excluding the point v = N) in the
domain of the function such that, for every value of v in that N-neighbor-
hood, its image lies in the chosen L-neighborhood. ‘

This statement can be clarified with the help of Fig. 6.3, which resembles Fig.
6.2a. From what was learned about the latter figure, we know that lim ¢ = L in

Fig. 6.3. Let us show that L does indeed fulfill the new definition of a lir);llil. Asthe
first step, select an arbitrary small neighborhood of L, say, (L — a,, L + a,).
(This should have been made even smaller, but we are keeping it relatively large
to facilitate exposition.) Now construct a neighborhood of N, say, (N — b,
N + b,), such that the two neighborhoods (when extended into quadrant I) will
together define a rectangle (shaded in diagram) with two of its corners lying on
the given curve. It can then be verified that, for every value of v in this
neighborhood of N (not counting v = N), the corresponding value of ¢ = g(v)
lies in the chosen neighborhood of L. In fact, no matter how small an L-neighbor-
hood we choose, a (correspondingly small) N-neighborhood can be found with the
property just cited. Thus L fulfills the definition of a limit, as was to be
demonstrated. :

We can also apply the above definition to the step function of Fig. 6.2¢ in
order to show that neither L, nor L, qualifies as lim g. If we choose a very small

neighborhood of L,—say, just a hair’s width on é)a;g side of L,—then, no matter
what neighborhood we pick for N, the rectangle associated with the two neighbor-
hoods cannot possibly enclose the lower step of the function. Consequently, for
any value of v > N, the corresponding value of g (located on the lower step) will
not be in the neighborhood of L, and thus L, fails the test for a limit. By similar
reasoning, L, must also be dismissed as a candidate for lim g. In fact, in this
case no limit exists for g as v = N. o=N

* The identification of an open interval as the neighborhood of a point is valid only when we are
considering a point on a line (one-dimensional space). In the case of a point in a plane (two-dimen-
sional space), its neighborhood must be thought of as an area, say, a circulararea around the point.
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ag=g(v)

The fulfillment of the definition can also be checked algebraically rather than
by graph. For instance, consider again the function '

1 — v?
(6.5) g¢q-= l_v=1+v (v+1)

It has been found in Example 2 that lim g = 2; thus, here we have N = 1 and

L = 2. To verify that L = 2 is indeed l)thel limit of g, we must demonstrate that,
for every chosen neighborhood of L, (2 — a,, 2 + a,), there exists a neighbor-
hood of N, (1 — b,, 1 + b,), such that, whenever v is in this neighborhood of N, ¢
must be in the chosen neighborhood of L. This means essentially that, for given
values of a, and a,, however small, two numbers b, and b, must be found such
that, whenever the inequality

(66) 1-b<v<l+b (v+1)
is satisfied, another inequality of the form
(6.7 2-a,<qg<2+a,

must also be satisfied. To find such a pair of numbers b, and b,, let us first rewrite
(6.7) by substituting (6.5):

(6.7) 2-a, <l+v<2+a,
This, in turn, can be transformed into the inequality
(6.7) 1-a, <v<1+a,

A comparison of (6.7")—a variant of (6.7)—with (6.6) suggests that if we choose
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the two numbers b, and b, to be b, = a, and b, = a,, the two inequalities (6.6)
and (6.7) will always be satisfied simultaneously. Thus the neighborhood of N,
(1 = b,, 1 + b,), as required in the definition of a limit, can indeed be found for
the case of L = 2, and this establishes L = 2 as the limit.

Let us now utilize the definition of a limit in the opposite way, to show that
another value (say, 3) cannot qualify as lim g for the function in (6.5). If 3 were

that limit, it would have to be true thavt,*f]or every chosen neighborhood of 3,
(3 ~ ay, 3 + a,), there exists a neighborhood of 1, (1 — b, 1 + b,), such that,
whenever v is in the latter neighborhood, ¢ must be in the former neighborhood.
That is, whenever the inequality

l1-b,<v<l1+b,
is satisfied, another inequality of the form

3—a, <1l+v<3+a,

or 2—a|<v<2+az

must also be satisfied. The only way to achieve this result is to choose b, = a;, — 1
and b, = a, + 1. This would imply that the neighborhood of 1 is to be the open
interval (2 — a,, 2 + a,). According to the definition of a limit, however, a;, and
a, can be made arbitrarily small, say, a, = a, = 0.1. In that case, the last-men-
tioned interval will turn out to be (1.9, 2.1) which lies entirely to the right of the
point v =1 on the horizontal axis and, hence, does not even qualify as a
neighborhood of 1. Thus the definition of a limit cannot be satisfied by the
number 3. A similar procedure can be employed to show that any number other
than 2 will contradict the definition of a limit in the present case.

In general, if one number satisfies the definition of a limit of g as v — N, then
no other number can. If a limit exists, it will be unique.

EXERCISE 6.4

1 Given the function g = (v® + v — 56)/(v — 7), (v # 7), find the left-side limit and the
right-side limit of g as v approaches 7. Can we conclude from these answers that g has a
limit as v approaches 7?
2 Given ¢ = [(v + 2)* — 8]/v, (v # 0), find:
(a) limg (b) limg (¢) limgqg
v—-0 02 v—a
3 Giveng=5-1/v, (v # 0), find:
(a) lim ¢ (b) lim g¢
v— + 00 0= — 0
4 Use Fig. 6.3 to show that we cannot consider the number (L + a,) as the limit of g as v
tends to N.




COMPARATIVE STATICS AND THE CONCEPT OF DERIVATIVE 141
6.5 DIGRESSION ON INEQUALITIES AND ABSOLUTE VALUES

We have encountered inequality signs many times before. In the discussion of the
last section, we also applied mathematical operations to inequalities. In trans-
forming (6.7’) into (6.7"”), for example, we subtracted 1 from each side of the
inequality. What rules of operations apply to inequalities (as opposed to equa-
tions)?

Rules of Inequalities

To begin with, let us state an important property of inequalities: inequalities are
transitive. This means that, if a > b and if b > ¢, then a > c. Since equalities
(equations) are also transitive, the transitivity property should apply to “weak”
in\equalities (= or <) as well as to “strict” ones (> or <). Thus we have

/a>b,b>c¢c = a>c¢
la>bb>c = ax=c
This property is what makes possible the writing of a continued inequality, such as
3<a<b<8or7< x<24. (In writing a continued inequality, the inequality
signs are as a rule arranged in the same direction, usually with the smallest
number on the left.) -
The most important rules of inequalities are those governing the addition
(subtraction) of a number to (from) an inequality, the multiplication or division
of an inequality by a number, and the squaring of an inequality. Specifically,
these rules are as follows.

Rule I (addition and subtraction) a>b = ax+k>btk

An inequality will continue to hold if an equal quantity is added to or subtracted
from each side. This rule may be generalized thus: If @ > b > ¢, then a + k >
btk>ctk - T

Rule II (multiplication and division)

ka > kb (k>0)
ka<kb  (k<0)

The multiplication of both sides by a positive number preserves the inequality, but
a negative multiplier will cause the sense (or direction) of the inequality to be
reversed. ' '

——

a>b

Example 1 Since 6 > 5, multiplication by 3 will yield 3(6) > 3(5), or 18 > 15;
but multiplication by — 3 will result in (—3)6 < (—3)5, or —18 < —15.

Division of an inequality by a number 7 is equivalent to multiplication by the
number 1/n; therefore the rule on division is subsumed under the rule on
multiplication.
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Rule IIl (squaring) ( a>b, (b>0) = a?>>b*)
If its two sides are both nonnegative, the inequality w111 contmue to hold when
both sides are squared.

Example 2 Since 4 > 3 and since both sides are positive, we have 4% > 32, or
16 > 9. Similarly, since 2 > 0, it follows that 22 > 02, or 4 > 0.

The above three rules have been stated in terms of strict inequalities, but their
validity is unaffected if the > signs are replaced by > signs.

Absolute Values and Inequalltles

When the domain of a variable x is an open interval (a, b), the domain may be
denoted by the set {x | a < x < b} or, more simply, by the inequality a < x_< b.
Similarly, if it is a closed interval [a, b], it may be expressed by the weak
inequality @ < x < b. In the special case of an interval of the form (—a, a)—say,
(—10, 10)—it may be represented either by the inequality —10 < x < 10 or,
alternatively, by the inequality » -

|x] < 10

where the symbol |x| denotes the absolute value (or numerical value) of x.
" For any real number n, the absolute value of n is defined as follows:*

n (ifn > 0)
(6.8) In| ={ —n (ifn < 0)
0 (ifn=0)

Note that, if n = 15, then |15] = 15; but if n = — 15, we find
| = 15| = = (=15)=15

also. In effect, therefore, the absolute value of any real number is simply its
numerical value after the sign is_removed. For this reason, we always have
|n| = | — n|. The absolute value of n is also called the modulus ofn.

~ Given the expression |x| = 10, we may conclude from (6.8) that x must be
either 10 or —10. By the same token, the expression |x| < 10 means that (1) if
x > 0, then x = |x| < 10, so that x must be less than 10; but also (2) if x < 0,
‘then according to (6.8) we have —x = |x| < 10, or x > — 10, so that x must be
greater than — 10. Hence, by combining the two parts of this result, we see that x
Tnust lie within the open interval (— 10, 10). In general, we can write =~ -~

(69) |xl<n e —-n<x<n (n>0)

* The absolute-value notation is similar to that of a first-order determinant, but these two concepts
are entirely different. The definition of a first-order determinant is |a,;| = a,;, regardless of the sign
of @, ;. In the definition of the absolute value |n|, the sign of n will make a difference. The context of
the discussion would normally make it clear whether an absolute value or a first-order determinant is
under consideration.
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which can also be extended to weak inequaliti_es as follows:
(6100 /lxj<n e -n<x<i) (n20)
Because they are themselves numbers, the absolute values of two numbers m

and n can be added, subtracted, multiplied, and divided. The following properties
characterize absolute values:

|m| + |n| = |m + n|

lm| + |n| = |m - n|
Im] _‘ﬁ‘
|n| In

The first of these, interestingly, involves an inequality rather than an equation.
The reason for this is easily seen: whereas the left-hand expression |m| + |n| is
definitely a sum of two numerical values (both taken as positive), the expression
|m + n| is the numerical value of either a sum (if m and n are, say, both positive)
or a difference (if m and n have opposite signs). Thus the left side may exceed the
right side.

Example 3 1f m =35 and n= 3, then |m| + |n| = |m+ n| =8 Butif m=35
and n = —3, then |m| + |n| =5 + 3 = 8, whereas

Im+n| =|5-3 =2

1 a smaller number.

In the other two properties, on the other hand, it makes no difference whether
m and n have identical or opposite signs, since, in taking the absolute value of the
product or quotient on the right-hand side, the sign of the latter term will be
removed in any case.

Example 4 1f m =7 and n = 8, then |m| - |n| = |m - n| = 7(8) = 56. But even

if m = =7 and n = 8 (opposite signs), we still get the same result from
lm| - |n| =] —=7]-18] =7(8) = 56
and |m-n| =1]—7(8) =7(8) =56

Solution of an Inequality

Like an equation, an inequality containing a variable (say, x) may have a
solution; the solution, if it exists, is a set of values of x which make the inequality
a true statement. Such a solution will itself usually be in the form of an inequality.

Example 5 Find the solution of the inequality
3Ix—-3>x+1
As in solving an equation, the variable terms should first be collected on one side
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of the inequality. By adding (3 — x) to both sides, we obtain
Ix—=3+3-x>x+1+3-x
or 2x > 4

Multiplying both sides by § (which does not reverse the sense of the inequality,
because 3 > 0) will then yield the solution

x>2

which is itself an inequality. This solution is not a single number, but a set of
numbers. Therefore we may also express the solution as the set {x | x > 2} or as
the open interval (2, o).

Example 6 Solve the inequality |1 — x| < 3. First, let us get rid of the absolute-
value notation by utilizing (6.10). The given inequality is equivalent to the
statement that

-3<1-x<3

or, after subtracting 1 from each side,
—4< —x<2

Multiplying each side by (— 1), we then get
4>x> -2

where the sense of inequality has been duly reversed. Writing the smaller number
first, we may express the solution in the form of the inequality

—-2<x<4

or in the form of the set {x | —2 < x < 4) or the closed interval [ -2, 4].

Sometimes, a problem may call for the satisfaction of several inequalities in
several variables simultaneously; then we must solve a system of simultaneous
inequalities. This problem arises, for example, in mathematical programming,
which will be discussed in the final part of the book.

EXERCISE 6.5

1 Solve the following inequalities:

(@) 3x -1 <Tx+2 (¢) Sx+1<x+3

(b) 2x +5<x—-4 (d) 2x —1<6x+5
2 If 7x — 3 < 0 and 7x > 0, express these in a continued inequality and find its solution.
3 Solve the following:

(a) [ x+1] <6 (b) 14-3x| <2 (¢) 2x+3| <5
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6.6 LIMIT THEOREMS

Our interest in rates of change led us to the consideration of the concept of
derivative, which, being in the nature of the limit of a difference quotient, in turn
prompted us to study questions of the existence and evaluation of a limit. The
basic process of limit evaluation, as illustrated in Sec. 6.4, involves letting the
variable v approach a particular number (say, N ) and observing the value which ¢
approaches. When actually evaluating the limit of a function, however, we may
draw upon certain established limit theorems, which can materially simplify the
task, especially for complicated functions.

Theorems Involving a Single Function

When a single function ¢ = g(v) is involved, the following theorems are applica-
ble. ' ' S

Theorem 1 If g =av + b, then lim q = aN + b (a and b are constants).
v—>N

Example 1 Given g = 5v + 7, we have lim2 q = 5@2) + 7 = 17. Similarly, lim ¢
: v v—0
=50)+7="1.

Theorem II If g = g(v) = b, then lim q = b.
v—=>N

that function, is merely a special case of Theorem I, with @ = 0. (You have
already encountered an example of this case in Exercise 6.2-3.)

Theorem III If g = v, then lim g = N.
v->N

If g = v, then lim ¢ = N*.

v—oN

Example 2 Given g = v°, we have limg = (2)* = 8.
v—2

You may have noted that, in the above three theorems, what is done to find
the limit of ¢ as v = N is indeed to let v = N. But these are special cases, and
they do not vitiate the general rule that “o — N ” does not mean “v = N.”

Theorems Involving Two Functions

If we have two functions of the same independent variable v, g, = g(v) and

limq, =L, limg,=1L,
v—N v—=>N B

where L,'ar_ld L, are two finite numbers, the following theorems are applicable.
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Theorem IV  (sum-difference limit theorem)

lim (g £ ¢,) =Ly £ L,
The 11m1t of a sum (diff erence) of two functions is the sum (difference) of their
respectlve 11m1ts

In particular, we note that
lim 2¢, = lim (¢, + ¢,) =L, + L, = 2L,
v—=N v—=N

which is in line with Theorem I.
Theorem V_ (product limit theorem)

lim (g,9,) = L\L,

v N
The limit of a product of two functions is the product of their limits.

Applied to the square of a function, this gives

lim (q,9,) =L,L, = L%

v—oN

which is in line with Theorem III.

Theorem VI (quotient limit theorem)

.49 L,
lim — = — L,#0
o N 42 L2 ( 2 )

The limit of a quotient of two functions is the quotient of their limits. Naturally,
the limit L, is restricted to be nonzero; otherwise the quotient is undefined.
Example 3 Find 11m (1 + v)/(2 + v). Since we have here lim (l +/f= 1 and
v 0~
\ 11m (2 + v) =2, the desired limit is 3. 5

Remember that L, and L, represent finite numbers; otherwise these thecems
do not apply. In the case of Theorem VI, furthermore, L, must be nonzero as
well. If these restrictions are not satisfied, we must fall back on the method of"
limit evaluation illustrated in Examples 2 and 3 in Sec. 6.4, which relate to the
cases, respectively, of L, being zero and of L, being infinite.

Limit of a Polynomial Function

With the above limit theorems at our disposal, we can easily evaluate the limit of
any polynomial function .

(6.11) q—g(v)—ao+alv+azv + - +av"

as v tends to the number N. Since the 11m1ts of the separate terms are,
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respectively,
lim a, = a, lim ajv = aN lim a,0* = a,N*  (etc.)
v—N v—N v—N

the limit of the polynomial function is (by the sum limit theorem)
(6.12) lim¢=ay,+ aN+ a,N*+---+a,N"
v—>N

This limit 1s also, we note, actually equal to g(N ), that is, equal to the value of the
function in (6.11) when v = N. This particular result will prove important in
discussing the concept of continuity of the polynomial function.

EXERCISE 6.6

1 Find the limits of the function g = 8 — 9v + v

(a) Asv—0 (b) Asv—3 (c) Asv—> —1
2 Find the limits of ¢ = (v + 2)(v — 3):

(a) Asv = —1 (b) Asv—0 (c) Asv— 4
3 Find the limits of g = (3v + 5)/(v + 2):

(a) Asv—-0 (b) Asv—5 (¢) Asv— —1

,4( 6.7 CONTINUITY AND DIFFERENTIABILITY OF A FUNCTION

The preceding discussion of the concept of limit and its evaluation can now be
used to define the continuity and differentiability of a function. These notions
bear directly on the derivative of the function, which is what interests us.

Continuity of a Function

When a function ¢ = g(v) possesses a limit as v tends to the point N in the
domain, and when this limit is also equal to g( N)—that is, equal to the value of
the function at v = N—the function is said to be continuous at N. As stated
above, the term continuity involves no less than three requirements: (1) the point
N must be in the domain of the function; i.e., g(N) is defined; (2) the function

* must have a limit as v = N;ie., lim g(v) exists; and (3) that limit must be equal
in value to g(N); i.e., lim g(v) = gAEN).

n—o N

It is important to note that while—in discussing the limit of the curve in Fig.
6.3—the point (N, L) was excluded from consideration, we are no longer
excluding it in the present context. Rather, as the third requirement specifically
states, the point (N, L) must be on the graph of the function before the function
can be considered as continuous at point N.

Let us check whether the functions shown in Fig. 6.2 are continuous. In
diagram a, all three requirements are met at point N. Point N is in the domain; ¢q
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has the limit L as v = N; and the limit L happens also to be the value of the
function at N. Thus, the function represented by that curve is continuous at N.
The same is true of the function depicted in Fig. 6.2b, since L is the limit of the
function as v approaches the value N in the domain, and since L is also the value
of the function at N. This last graphic example should suffice to establish that the
continuity of a function at point N does not necessarily imply that the graph of
the function is “smooth” at v = N, for the point (N, L) in Fig. 6.2b is actually a
“sharp” point and yet the function is continuous at that value of v.

When a function g = g(v) is continuous at all values of v in the interval
(a, b), it is said to be continuous in that interval. If the function is continuous at
all points in a subset S of the domain (where the subset S may be the union of
several disjoint intervals), it is said to be continuous in S. And, finally, if the
function is continuous at all points in its domain, we say that it is continuous in
its domain. Even in this latter case, however, the graph of the function may
nevertheless show a discontinuity (a gap) at some value of v, say, at v = 5, if that
value of v is not in its domain.

Again referring to Fig. 6.2, we see that in diagram c¢ the function is
discontinuous at N because a limit does not exist at that point, in violation of the
second requirement of continuity. Nevertheless, the function does satisfy
the requirements of continuity in the interval (0, N) of the domain, as well as in
the interval [N, o0). Diagram d obviously is also discontinuous at v = N. This
time, discontinuity emanates from the fact that N is excluded from the domain, in
violation of the first requirement of continuity.

On the basis of the graphs in Fig. 6.2, it appears that sharp points are
consistent with continuity, as in diagram b, but that gaps are taboo, as in
diagrams c and d. This is indeed the case. Roughly speaking, therefore, a function
that is continuous in a particular interval is one whose graph can be drawn for the
said interval without lifting the pencil or pen from the paper—a feat which is
possible even if there are sharp points, but impossible when gaps occur.

Polynomial and Rational Functions

Let us now consider the continuity of certain frequently encountered functions.
For any polynomial function, such as ¢ = g(v) in (6.11), we have found from
(6.12) that lim g exists and is equal to the value of the function at N. Since N is a

point (anyv;o];,nt) in the domain of the function, we can conclude that any
polynomial function is continuous in its domain. This is a very useful piece of
information, because polynomial functions will be encountered very often.

What about rational functions? Regarding continuity, there exists an interest-
ing theorem (the continuity theorem) which states that the sum, difference,
product, and quotient of any finite number of functions that are continuous in the
domain are, respectively, also continuous in the domain. As a result, any rational
function (a quotient of two polynomial functions) must also be continuous in its
domain.
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Example 1 The rational function
492
0?2+ 1
is defined for all finite real numbers; thus its domain consists of the interval

(— 00, o). For any number N in the domain, the limit of q is (by the quotient
limit theorem)

g=3(v)=

. 2
. JE“N(“" ) 4N?
lim g = — =
0N lim (v2+1) NZ+1
v—=N

which is equal to g(N). Thus the three requirements of continuity are all met at
N. Moreover, we note that N can represent any point in the domain of this
function; consequently, this function is continuous in its domain.

Example 2 The rational function = ..y .{ R A G I

.V £/ -
3 2 ,,\V“f( V/' - 4 _: G ,__.%.——-—'—'_""_"
q=v +0v°—4v— T./ﬁJIUFtJ ) - — 2 O
2 ", .
v°—4
is not _deﬁned at v = 2 and at v = —2. Since those two values of v are not in the
domain, the function is discontinuous at v = —2 and v = 2, despite the fact that

a limit of g exists as v = —2 or 2. Graphically, this function will display a gap at
each of these two values of v. But for other values of v (those which are in the
domain), this function is continuous.

Differentiability_ (_)f a Function_

The previous discussion has provided us with the tools for ascertaining whether
any function has a limit as its independent variable approaches some specific
value. Thus we can try to take the limit of any function y = f(x) as x approaches
some chosen value, say, x,. However, we can also apply the “limit” concept at a
different level and take the limit of the difference quotient of that function,
Ay/Ax, as Ax approaches zero. The outcomes of limit-taking at these two
different levels relate to two different, though related, properties of the function f.

Taking the limit of the function y = f(x) itself, we can, in line with the
discussion of the preceding subsection, examine whether the function f is continu-
ous at x = x,. The conditions for continuity are (1) x = x, must be in the domain
of the function f, (2) y must have a limit as x — x,, and (3) the said limit must be
equal to f(x,). When these are satisfied, we can write

(6.13) / lim f(x) =f(x,) [continuity condition]j
X7 Xo

When the “limit” concept is applied to the difference quotient Ay/Ax as
Ax — 0, on the other hand, we deal instead with the question of whether the
function f is differentiable at x = x,, i.e., whether the derivative dy/dx exists at
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x = x,, or whether f'(x,) exists. The term “differentiable” is used here because
the process of obtaining the derivative dy/dx is known as differentiation (also
called derivation). Since f'(x,) exists if and only if the limit of Ay/Ax exists at’
x = xg as Ax — 0, the symbolic expression of the differentiability of £ is

NG
(6.11 £/(x0) —ilgxo iy D

T [t Ax) — f(x0)
= lIm
Ax—0 Ax

[differentiability condition]

These two properties, continuity and differentiability, are very intimately
related to each other—the continuity of f is a necessary condition for _its
differentiability (although, as we shall see later, this condition is not sufficient).
What this means is that, to be differentiable at x = x,, the function must first
pass the test of being continuous at x = x,. To prove this, we shall demonstrate
that, given a function y = f(x), its continuity at x = x, follows from its differen-
tiability at x = x, i.e., condition (6.13) follows from condition (6.14). Before
doing this, however, let us simplify the notation somewhat by (1) replacing x,
with the symbol N and (2) replacing (x, + Ax) with the symbol x. The latter is
justifiable because the postchange value of x can be any number (depending on
the magnitude of the change) and hence is a variable denotable by x. The
equivalence of the two notation systems is shown in Fig. 6.4, where the old
notations appear (in brackets) alongside the new. Note that, with the notational
change, Ax now becomes (x — N), so that the expression “Ax — 0” becomes

l. y=1(x)

|
F)——— — —
[f (xo + ax)]
Ay

f(N)————
lf(xo)ll

|
|
|
D S
(0] N——>x
[x0] [xo + ax]

Figure 6.4
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“x — N,” which is analogous to the expression v — N used before in connection
with the function ¢ = g(v). Accordingly, (6.13) and (6.14) can now be rewritten,
respectively, as

(6.13) x]if}vf(x) =f(N)

: M
(6.14)  f'(N) = e
What we want to show is, therefore, that the continuity condition (6.13")
follows from the differentiability condition (6.14"). First, since the notation
x — Nimplies that x # N, so that x — N is a nonzero number, it is permissible to
write the following identity:

615) (0 -rv) = LI ()

Taking the limit of each side of (6.15) as x — N yields the following results:
Left side = lim f(x) — lin}‘lf(N) [difference limit theorem]
x—>N x—

= lim f(x) —f(N) [f(N) is a constant]
XN =
nght side = lim f(x) = J(N) lim (x — N) [product limit theorem]
x—N X — N x—N . -
= f (N)( lim x — lim N) [by (6.14’) and difference
x—N === —

limit thgorem]
=/ (N)(N=N)=0

Note that we could not have written these results, if condition (6.14’) had not
been granted, for if f'(N) did not exist, then the right-side expression (and hence
also the left-side expression) in (6.15) would not possess a limit. If f’(N) does
exist, however, the two sides will have limits as shown above. Moreover, when the
left-side result and the right-side result are equated, we get llII)lV f(x)—f(N)=

which is identical with (6.13"). Thus we have proved that continuity, as shown in
(6.13"), follows from differentiability, as shown in (6.14"). In general, if a function
is differentiable at every point in its domain, we may conclude that it must be
continuous in its domain.

Although differentiability implies continuity, the converse is not true. That is,
continuity is a necessary, but not a sufficient, condition for differentiability. To
demonstrate this, we merely have to produce a counterexample Let us consider
the function

(6.16) y=f(x)=|x—-2|+1
which is graphed in Fig. 6.5. As can be readily shown, this function is not

differentiable, though continuous, when x = 2. That the function is continuous at
x = 2 is easy to establish. First, x = 2 is in the domain of the function. Second,
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the limit of y exists as x tends to 2; to be specific, lim y = lim y = 1. Third,
x—2* x—2"

f(2) is also found to be 1. Thus all three requirements of continuity are met. To
show that the function f is not differentiable at x = 2, we must show that the lll’nlt
of the difference quotient :

p ) =) x =2 k1= -2
x—2 x—2 x-32 x—2 12 X — 2

_does not exist. This involves the demonstration of a disparity between the left-side
and the right-side limits. Since, in considering the right-side limit, x must exceed
2, according to the definition of absolute value in (6.8) we have |x — -2 =x=2.
Thus the right-side limit is

o x =20 o x =2 _
R T I L

On the other hand, in considering the left-side limit, x must be less than 2; thus,

according to (6.8), |[x — 2| = —(x — 2). Consequently, the left-side limit is
=2l oy =2y =
xl_l.’?- x—2 xl_l.nzl— x—2 xlirlzl—( D :

which is different from the right-side limit. This shows that continuity does not
guarantee differentiability. In sum, all differentiable functions are continuous, but
not all continuous functions are differentiable. ) T
~ In Fig. 6.5, the nondifferentiability of the function at x = 2 is manifest in the
fact that the point (2, 1) has no tangent line defined, and hence no definite slope
can be assigned to the point. Specifically, to the left of that point, the curve has a

y=lx—21+1
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slope of —1, but to the right it has a slope of + 1, and the slopes on the two sides
display no tendency to approach a common magnitude at x = 2. The point (2, 1)
is, of course, a special point; it is the only sharp point on the curve. At other
points on the curve, the derivative is defined and the function is differentiable.
More specifically, the function in (6.16) can be divided into two linear functions
as follows: :

Leftpart: y= —(x-2)+1=3-x (x<2)
Rightpart:y = (x—-2)+1=x-1 (x>2)

The left part is differentiable in the interval (—o0,2), and the right part is
differentiable in the interval (2, o) in the domain.

In general, differentiability is a more restrictive condition than continuity,
because it requires something beyond continuity. Continuity at a point only rules
out the presence of a gap, whereas differentiability rules out “sharpness” as well.
Therefore, differentiability calls for “smoothness” of the function (curve) as well
as its continuity. Most of the specific functions employed in economics have the
property that they are differentiable everywhere. When general functions are used,
moreover, they are often assumed to be everywhere differentiable, as we shall do.
in the subsequent discussion.

—

EXERCISE 6.7

1 A function y = f(x) is discontinuous at x = x, when any of the three requirements for
continuity is violated at x = x,. Construct three graphs to illustrate the violation of each
of those requirements.

2 Taking the set of all finite real numbers as the domain of the function g = g(v) = v* —
To — 3:

(a) Find the limit of ¢ as v tends to N (a finite real number).

(b) Check whether this limit is equal to g(N).

(¢) Check whether the function is continuous at N and continuous in its domain.
v+2

0242
(a) Use the limit theorems to find lim g, N being a finite real number.
- N

(b) Check whether this limit is equ;l to g(N).
(¢) Check the continuity of the function g(v) at N and in its domain (— o0, 00).

2
, +x —
4 Giveny = f(x) = xx7f420:

(a) Is it possible to apply the quotient limit theorem to find the limit of this function as
x — 4?

(b) Is this function continuous at x = 4? Why?

(¢) Find a function which, for x # 4, is equivalent to the above function, and obtain
from the equivalent function the limit of y as x — 4.

3 Given the function g = g(v) =
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5 In the rational function in Example 2, the numerator is evenly divisible by the
denominator, and the quotient is v + 1. Can we for that reason replace that function
outright by g = v + 1? Why or why not?

6 On the basis of the graphs of the six functions in Fig. 2.8, would you conclude that each
such function is differentiable at every point in its domain? Explain.




CHAPTER

SEVEN

RULES OF DIFFERENTIATION AND THEIR USE
IN COMPARATIVE STATICS

The central problem of comparative-static analysis, that of finding a rate of
change, can be identified with the problem of finding the derivative of some
function y = f(x), provided only a small change in x is being considered. Even
though the derivative dy/dx is defined as the limit of the difference quotient
q = g(v) as v > 0, it is by no means necessary to undertake the process of
limit-taking each time the derivative of a function is sought, for there exist various
rules of differentiation (derivation) that will enable us to obtain the desired
derivatives directly. Instead of going into comparative-static models immediately,
therefore, let us begin by learning some rules of differentiation.

7.1 RULES OF DIFFERENTIATION FOR A FUNCTION OF
ONE VARIABLE

First, let us discuss three rules that apply, respectively, to the following types of
function of a single independent variable: y = k (constant function), y = x", and
y = cx" (power functions). All these have smooth, continuous graphs and are
therefore differentiable everywhere.

Constant-Func_tMulg R

The derivative of a constant function y = f(x) = k is identically zero, i.e., is zero

for all values of x. Symbolically, this may be expressed variously as
dy _ 0 dk

ix or g;=0 or f(x)=0

155
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In fact, we may also write these in the form
d%y = d%f(X) =;1d;k =0
where the derivative symbol has been separated into two parts, d/dx on the one
hand, and y [or f(x) or k] on the other. The first part, d/dx, may be taken as an
operator symbol, which instructs us to perform a particular mathematical opera-
tion. Just as the operator symbol vV instructs us to take a square root, the symbol
d/dx represents an instruction to take the derivative of, or to differentiate, (some
function) with respect to the variable x. The function to be operated on (to be
differentiated) is indicated in the second part; here it is y = f(x) = k.
The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for
any value of N. Thus the value of f'(N)—the value of the derivative at
x = N—as defined in (6.13) will be

___f(x)—f(N)= lim K=k _ lim 0 =0
x—N

f(N) = lim
xoN X — x—>N

x—N
Moreover, since N represents any value of x at all, the result f'(N) = 0 can be
immediately generalized to f'(x) = 0. This proves the rule.

It is important to distinguish clearly between the statement f'(x) = 0 and the
similar-looking but different statement f'(x,) = 0. By f(x) = 0, we mean that the
derivative function f’ has a zero value for all values of x; in writing f'(x,) = 0, on
the other hand, we are merely associating the zero value of the derivative with a
particular value of x, namely, x = x,,.

As discussed before, the derivative of a function has its geometric counterpart
in the slope of the curve. The graph of a constant function, say, a fixed-cost
function Cr = f(Q) = $1200, is a horizontal straight line with a zero slope
throughout. Correspondingly, the derivative must also be zero for all values of Q:

d d
a0 Cr= gg1200=0  or (Q)=0

Power-Function Rule

The derivative of a power function y = f(x) = x" is nx"~!. Symbolically, this is
expressed as '

d

(7.1) X = nx"' or  f'(x)=nx"""!
- . dy d

= 3 —_—— = — 3 = 2

Example 1 The derivative of y = x° is e et 3x°.

. . d
Example 2 The derivative of y = x° is Ex" = 9x?%.

This rule is valid for any real-valued power of x; that is, the exponent can be
any real number. But we shall prove it only for the case where n is some positive

—



RULES OF DIFFERENTIATION AND THEIR USE IN COMPARATIVE STATICS 157

integer. In the simplest case, that of n =1, the function is f(x)= x, and
according to the rule, the derivative is

Fx) = gox = 1x0) = 1

The proof of this result follows easily from the definition of f'(N) in (6.14").
Given f(x) = x, the derivative value at any value of x, say, x = N, is
vy g JO)—fN) e x =N
f(N)_xh—{r}v x—N _}I-I»I;lvx— —xh_.nzlvl—l

Since N represents any value of x, it is permissible to write f'(x) = 1. This proves
the rule for the case of n = 1. As the graphical counterpart of this result, we see
that the function y = f(x) = x plots as a 45° line, and it has a slope of +1
throughout.

For the cases of larger integers, n = 2,3,..., let us first note the following
identities:

2 __ N2
xT—T =x+N [2 terms on the right]
x3 _ N3
N = x2+ Nx + N? [3 terms on the right]
x" - N" n—1 n-2 2.n-3 n—1
(7.2) ~—N =~ + Nx"" 2+ NXx" >+ ---+N

[n terms on the right]

On the basis of (7.2), we can express the derivative of a power function f(x) = x"
at x = N as follows:

@3) gy = tim LNy 22N
= xliﬂv(x"—‘ + Nx""2+ ...+ N* 1) [by(7.2)]
= limx""'+ lim Nx" "2+ ...+ lim N"!
x—=N x—+N x—+N
[sum limit theorem]
=N"'4+N" ' 4 ... 4 NI [a total of n terms]
=nN""!
Again, N is any value of x; thus this last result can be generalized to
F(x) = men!

which proves the rule for n, any positive integer.

As mentioned above, this rule applies even when the exponent n in the power
expression x”" is not a positive integer. The following examples serve to illustrate
its application to the latter cases.
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Example 3 Find the derivative of y = x°. Applying (7.1), we find
d o -1

—x =0 =0

X =07

Example 4 Find the derivative of y = 1/x>. This involves the reciprocal of a
power, but by rewriting the function as y = x~3, we can again apply (7.1) to get
the derivative:

d [_ -3

x4

4 3_ _q.-4
dxx 3x

Example 5 Find the derivative of y = yx . A square root is involved in this case,
but since Vx = x'/2, the derivative can be found as follows:

d 1/2 1 -1,2 1
-5 X = =X = —
dx 2 2Vx

Derivatives are themselves functions of the independent variable x. In
Example 1, for instance, the derivative is dy /dx = 3x?, or f’(x) = 3x%, so that a
different value of x will result in a different value of the derivative, such as

=31y =3 f@)=32"=1
These specific values of the derivative can be expressed alternatively as

AT - AT

dx x=1 dx x=2
but the notations f’(1) and f'(2) are obviously preferable because of their
simplicity.

It is of the utmost importance to realize that, to find the derivative values
f'(1), f'(2), etc, we must first differentiate the function f(x), in order to get the
derivative function f’(x), and then let x assume specific values in f’(x). To
substitute specific values of x into the primitive function f(x) prior to differentia-
tion is definitely not permissible. As an illustration, if we let x = 1 in the function
of Example 1 before differentiation, the function will degenerate into y = x = 1
—a constant function—which will yield a zero derivative rather than the correct
answer of f’(x) = 3x2.

Power-Function Rule Generalized

When a multiplicative constant ¢ appears in the power function, so that f(x) =
cx", its derivative is

d _ _
—cx"=cnx""'  or  f/(x)=cnx""!

dx

This result shows that, in differentiating cx”, we can simply retain the multiplica-
tive constant ¢ intact and then differentiate the term x" according to (7.1).
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Example 6 Given y = 2x, we have dy/dx = 2x° = 2.
Example 7 Given f(x) = 4x3, the derivative is f'(x) = 12x2.
Example 8 The derivative of f(x) = 3x"2is f'(x) = —6x .

For a proof of this new rule, consider the fact that for any value of x, say,
x = N, the value of the derivative of f(x) = ¢x" is

) o f(x)—f(N) . ex"—cN" (x"—N”)
f(N)—)(ll_{r}v x—N —)(ll_{nN x—N _xh_r.r;lvc x—N
= ljnlxvc limN ——xx — }NV [product limit theorem]
P g X -
= ¢ lim XN [limit of a constant]

x—>N X — N
=cnN""! [from (7.3)]

In view that N is any value of x, this last result can be generalized immediately to
f/(x) = cnx"~", which proves the rule.

EXERCISE 7.1

1 Find the derivative of each of the following functions:
(a) y=x" (c) y="Txb (e) w= —44'?
(b) y=163 (dyw=3u""!

2 Find the following: J

L (-4 i a P ]
(a) 5 (=x7) (c) =, 9w (e)  au
a0 d
(b) dx?x (d) dxcx

3 Find f’(1) and f’(2) from the following functions:

(a) y=f(x)=18x (¢) f(x)= —5x? (e) f(w)=6w'"?
(b) y = f(x) =ex’ (d) f(x)=3ix*

4 Graph a function f(x) that gives rise to the derivative functionf’(x) = 0. Then graph a
function g(x) characterized by f’(x,) = 0.

7.2 RULES OF DIFFERENTIATION INVOLVING TWO OR MORE
FUNCTIONS OF THE SAME VARIABLE

The three rules presented in the preceding section are each concerned with a
single given function f(x). Now suppose that we have two differentiable functions
of the same variable x, say, f(x) and g(x), and we want to differentiate the sum,
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difference, product, or quotient formed with these two functions. In such circum-
stances, are there appropriate rules that apply? More concretely, given two
functions—say, f(x) = 3x? and g(x) = 9x'>—how do we get the derivative of,
say, 3x2 + 9x'2, or the derivative of (3x2)(9x'?)?

Sum-Difference Rule

The derivative of a sum (difference) of two functions is the sum (difference) of the
derivatives of the two functions:

L1002 8] = 2f(x) £ 2g(x) = (x) £ 8/(x)

The proof of this again involves the application of the definition of a derivative
and of the various limit theorems. We shall omit the proof and, instead, merely
verify its validity and illustrate its application.

Example 1 From the function y = 14x3, we can obtain the derivative dy/dx =
42x%. But 14x3 = 5x* + 9x3, so that y may be regarded as the sum of two
functions f(x) = 5x* and g(x) = 9x3. According to the sum rule, we then have

L

d 9x3 = 15x2 + 27x?% = 42x2
dx

i 3 3 —i 3 el
dx(Sx + 9x%) = X +

d

which is identical with our earlier result.

This rule, stated above in terms of two functions, can easily be extended to
more functions. Thus, it is also valid to write

L[7(x) £ 8(x) £ h(0)] = 7(x) £ () £ ()

Example 2 The function cited in Example 1, y = 14x>, can be written as
y = 2x3 + 13x3 — x3. The derivative of the latter, according to the sum-difference
rule, is

Z—ﬁ = dix(zx3 + 13x3 — x3) = 6x? + 39x% — 3x? = 42x?

which again checks with the previous answer.

This rule is of great practical importance. With it at our disposal, it is now
possible to find the derivative of any polynomial function, since the latter is
nothing but a sum of power functions.

d
Example 3 d—x(ax2 +bx+c)=2ax+b
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Example 4

%(7x4+2x3—3x+37)=28x3+6x2—3+0=28x3+6x2—3

Note that in the last two examples the constants ¢ and 37 do not really
produce any effect on the derivative, because the derivative of a constant term is
zero. In contrast to the multiplicative constant, which is retained during differenti-
ation, the additive constant drops out. This fact provides the mathematical
explanation of the well-known economic principle that the fixed cost of a firm
does not affect its marginal cost. Given a short-run total-cost function

C=0%-40*+10Q0+75

the marginal-cost function (for infinitesimal output change) is the limit of the
quotient AC/AQ, or the derivative of the C function:

ac . o,

a0 30°—-80 + 10
whereas the fixed cost is represented by the additive constant 75. Since the latter
drops out during the process of deriving dC/dQ, the magnitude of the fixed cost
obviously cannot affect the marginal cost.

In general, if a primitive function y = f(x) represents a rotal function, then
the derivative function dy/dx is its marginal function. Both functions can, of
course, be plotted against the variable x graphically; and because of the corre-
spondence between the derivative of a function and the slope of its curve, for each
value of x the marginal function should show the slope of the total function at
that value of x. In Fig. 7.la, a linear (constant-slope) total function is seen to
have a constant marginal function. On the other hand, the nonlinear (varying-
slope) total function in Fig. 7.1b gives rise to a curved marginal function, which
lies below (above) the horizontal axis when the total function is negatively
(positively) sloped. And, finally, the reader may note from Fig. 7.1c (cf. Fig. 6.5)
that “nonsmoothness” of a total function will result in a gap (discontinuity) in
the marginal or derivative function. This is in sharp contrast to the everywhere-
smooth total function in Fig. 7.15 which gives rise to a continuous marginal
function. For this reason, the smoothness of a primitive function can be linked to
the continuity of its derivative function. In particular, instead of saying that a
certain function is smooth (and differentiable) everywhere, we may alternatively
characterize it as a function with a continuous derivative function, and refer to it
as a continuously differentiable function.

Product Rule

The derivative of the product of two (differentiable) functions is equal to the first
function times the derivative of the second function plus the second function
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Y
!
| y=1+ 1,
. 2

(total)

dy 1
dx 2

(marginal)

-x
dy 1 ,
—— B -1 aiCAN—— _
0 x 0 P 2 x 10 (marginal)
(a) (b)

__55-—-1? (Izéa)
y= } x—1 (x>3)
(total)

—1 (x<3)
1 (x>3)
(marginai)

(¢)

Figure 7.1

times the derivative of the first function:
(14)  L[(x)8()] = £(x) g (x) + g(x) 1 (x)
=f(x)g'(x) +g(x)f'(x)

Example 5 Find the derivative of y = (2x + 3)(3x2). Let f(x) = 2x + 3 and
g(x) = 3x2 Then it follows that f(x) = 2 and g’(x) = 6x, and according to (7.4)
the desired derivative is

%[(ZX +3)(3x2)] = (2x + 3)(6x) + (3x2)(2) = 18x2 + 18x

This result can be checked by first multiplying out f(x)g(x) and then taking the
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derivative of the product polynomial. The product polynomial is in this case
f(x)g(x)= (2x + 3)(3x2) = 6x* + 9x2, and direct differentiation does yield the
same derivative, 18x% + 18x.

The important point to remember is that the derivative of a product of two
functions is not the simple product of the two separate derivatives. Since this
differs from what intuitive generalization leads one to expect, let us produce a
proof for (7.4). According to (6.13), the value of the derivative of f(x)g(x) when
x = N should be

(7.5) d—‘i[f(x)g(x)] J‘=N= _,}i_l,l}vf(X)g(x;);_—ij!N)g(N)

But, by adding and subtracting f(x)g(N ) in the numerator (thereby leaving the
original magnitude unchanged), we can transform the quotient on the right of
(7.5) as follows:

f(x)g(x) — f(x)g(N) + f(x)g(N) - f(N)g(N)
x— N

=f(x).w_ + g(N)f(xl :f(N)

Substituting this for the quotient on the right of (7.5) and taking its limit, we then
get

05 E00e00] = tim 1(x) tim £ ZE0N)

: . f(x) = f(N)
+ 1 N) lim ————=
X l—'n)]\’ g( ) X l—r’rll\’ x—N
The four limit expressions in (7.5") are easily evaluated. The first one is f(/N), and
the third is g(N) (limit of a constant). The remaining two are, according to (6.13),
respectively, g’(N) and f'(N). Thus (7.5’) reduces to

(157 2 Le]| = 1(N)g(N) +g(N)F(N)

And, since N represents any value of x, (7.5”") remains valid if we replace every N
symbol by x. This proves the rule.
As an extension of the rule to the case of three functions, we have

(16) 2 [7()&()R(x)] = £(x)&(x)h(x) + () (x)h(x)
+(x) g () ()

In words, the derivative of the product of three functions is equal to the product
of the second and third functions times the derivative of the first, plus the prod-
uct of the first and third functions times the derivative of the second, plus the
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product of the first and second functions times the derivative of the third. This
result can be derived by the repeated application of (7.4). First treat the product
g(x)h(x) as a single function, say, ¢(x), so that the original product of three
functions will become a product of two functions, f(x)¢(x). To this, (7.4) is
applicable. After the derivative of f(x)¢(x) is obtained, we may reapply (7.4) to
the product g(x)h(x) = ¢(x) to get ¢’(x). Then (7.6) will follow. The details are
left to you as an exercise.

The validity of a rule is one thing; its serviceability is something else. Why do
we need the product rule when we can resort to the alternative procedure of
multiplying out the two functions f(x) and g(x) and then taking the derivative of
the product directly? One answer to that question is that the alternative procedure
is applicable only to specific (numerical or parametric) functions, whereas the
product rule is applicable even when the functions are given in the general form.
Let us illustrate with an economic example.

Finding Marginal-Revenue Function from Average-Revenue Function

If we are given an average-revenue (AR) function in specific form,
AR =15-0)

the marginal-revenue (MR) function can be found by first multiplying AR by Q
to get the total-revenue (R) function:

REAR-Q=(15—'Q%)Q=@

and then differentiating R: i

_dR _ )
[ MR = a0 " 15-20)
But if the AR function is given in the general form AR = f(Q), then the
total-revenue function will also be in a general form:

R=AR-Q=/(Q)-Q
and therefore the “multiply out” approach will be to no avail. However, because
R is a product of two functions of Q, namely, f(Q) and Q itself, the product rule
may be put to work. Thus we can differentiate R to get the MR function as
follows:

(17) MR = j—g —£(0) 1+ 0-1(0) = £(0) + 07(Q)

However, can such a general result tell us anything significant about the MR?
Indeed it can. Recalling that f(Q) denotes the AR function, let us rearrange (7.7)
and write

(7.77) MR - AR = MR - f(Q) = 0f(Q)

This gives us an important relationship between MR and AR: namely, they will

always differ by the amount Qf'(Q). T
aiways ciier by the amount £ (¢)-
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It remains to examine the expression Qf'(Q). Its first component Q denotes
output and is always nonnegative. The other component, f’(Q), represents the

slope of the AR curve plotted against Q. Since “average revenue” and “price” are
but different names for the same thing:

R _ PO _
0= 0

the AR curve can also be regarded as a curve relating price P to output Q:
P = f(Q). Viewed in this light, the AR curve is simply the inverse of the demand
curve for the product of the firm, i.e., the demand curve plotted after the P and Q
axes are reversed. Under pure competition, the AR curve is a horizontal straight
line, so that f(Q) = 0 and, from (7.7°), MR — AR = 0 for all possible values of
Q. Thus the MR curve and the AR curve must coincide. Under imperfect
‘competition, on the other hand, the AR curve is normally downward-sloping, as
in Fig. 7.2, so that f'(Q) <0 and, from (7.7"), MR — AR < 0 for all positive
levels of output. In this case, the MR curve must lie below the AR curve.

The conclusion just stated is qualitative in nature; it concerns only the relative
positions of the two curves. But (7.7') also furnishes the quantitative information
that the MR curve will fall short of the AR curve at any output level Q by
precisely the amount Qf'(Q). Let us look at Fig. 7.2 again and consider the
particular output level N. For that output, the expression Qf'(Q) specifically
becomes Nf'(N); if we can find the magnitude of Nf'(N) in the diagram, we shall
know how far below the average-revenue point G the corresponding marginal-
revenue point must lie. T

The magnitude of N is already specified. And f'(N) is simply the slope of the
AR curve at point G (where Q = N), that is, the slope of the tangent line JM_
measured by the ratio of two distances OJ /OM. However, we see that OJ /OM =

AR

i

AR=P

AR=P={(Q)

Figure 7.2
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HJ /HG; besides, distance HG is precisely the amount of output under considera-
tion, N. Thus the distance Nf'(N ), by which the MR curve must lie below the AR
curve at output N, is

HJ
Nf'(N) = = _
f'(N) HG= = HJ

Accordingly, if we mark a vertical distance KG = HJ directly below point G, then
point K must be a point on the MR curve. (A simple way of accurately plotting
KG is to draw a straight line passing through point H and parallel to JG; point K
is where that line intersects the vertical line NG.)

The same procedure can be used to locate other points on the MR curve. All
we must do, for any chosen point G’ on the curve, is first to draw a tangent to the
AR curve at G’ that will meet the vertical axis at some point J’. Then draw a
horizontal line from G’ to the vertical axis, and label the intersection with the axis
as H'. If we mark a vertical distance K'G’ = H'J’ directly below point G’, then
the point K’ will be a point on the MR curve. This is the graphical way of
deriving an MR curve from a given AR curve. Strictly speaking, the accurate
drawing of a tangent line requires a knowledge of the value of the derivative at
the relevant output, that is, f'(N); hence the graphical method just outlined
cannot quite exist by itself. An important exception is the case of a linear AR
curve, where the tangent to any point on the curve is simply the given line itself,
so that there is in effect no need to draw any tangent at all. Then the above
graphical method will apply in a straightforward way.

Quotient Rule

The derivative of the quotient of two functions, f(x)/g(x), is

d f(x) _ f'(x)g(x) —f(x)g'(x)
dx g(x) g*(x)

In the numerator of the right-hand expression, we find two product terms, each
involving the derivative of only one of the two original functions. Note that f’(x)
appears in the positive term, and g’(x) in the negative term. The denominator
consists of the square of the function g(x); that is, g2(x) = [g(x)]>

Example 6 4 (

2x—3)=2(x+1)—(2x—3)(1)= 5

dx| x +1 (x+ 1) (x+ 1)

Example 7

i( 5x ) _S(x*+4 1) —5x(2x) _ 5(1 — x?)
dxix?+1 (x?+ 1) (x?+ 1)’

ax? + b) _ 2ax(ex) — (ax® + b)(c)

cx (cx)z
_ c(ax? - b) - ax?—b

(ex)? cx?

Example 8 di(

=
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This rule can be proved as follows. For any value of x = N, we have

(7.8) %g_ﬁ _-m f(X)/g(x))c —_f}éN)/g(N)

The quotient expression following the limit sign can be rewritten in the form
f(x)g(N) —f(N)g(x) 1
g(x)g(N) x=N

By adding and subtracting f(N)g(N ) in the numerator and rearranging, we can
further transform the expression to

[f(x g(N) —f(N)g(N) +f(N)g(N) — f N)g(x)]

g(X)g(N) x—N

(OECIRMECEELI

g(x)g(N) [3( N

Substituting this result into (7.8) and taking the limit, we then have

d f(x) f(x) — f(N)
x—N

& g(x) = lim hm g(N) lim

x=N x—N g(X)g(N)[ x—N

- hm f(N) lim _______g(xi:i(N)]

x—+N

v LS~ g ] - [oy (6.13)]

which can be generalized by replacing the symbol N with x, because N represents
any value of x. This proves the quotient rule.

Relationship Between Marginal-Cost and Average-Cost Functions

As an economic application of the quotient fule, let us consider the rate of change
of average cost when output varies.
Given a total-cost f funclion C = C(Q), lhe average-cost (AC) function will be

Therefore, the rate of change of AC W1th respect to Q can be found by__
differentiating AC:

(1.9) d c(Q) _[c(9)-0-¢c(@)-1] _ é[c’(Q) B C(Q)]

a Q Q? Q
From this it follows that, for 0> 0
}7/ T —— e ——————— e T
: 4 c(0) . ,
(7.10) Q 20 iff C(Q)2

dQ Q

R
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Since the derivative C'(Q) represents the marginal-cost (MC) function, and
C(Q)/Q represents the AC function, the economic meaning of (7.10) is: The
slope of the AC curve will be positive, zero, or negative if and only if the
marginal-cost curve lies above, intersects, or lies below the AC curvg. This is
illustrated in Fig. 7.3, where the MC and AC functions plotted are based on the
specific total-cost function

.
' C= @ - 120% + 600/

To the left of Q = 6, AC is declining, and thus MC lies below it; to the right, the
opposite is true. At Q = 6, AC has a slope of zero, and MC and AC have the
same value.* '

The qualitative conclusion in (7.10) is stated explicitly in terms of cost
functions, However, its validity remains unaffected if we interpret C(Q) as any
average and marginal functions. Thus this result gives us a general marginal-aver-
age relationship. In particular, we may point out, the fact that MR lies below AR
when AR is downward-sloping, as discussed in connection with Fig. 7.2, is
nothing but a special case of the general result in (7.10).

* Note that (7.10) does not state that, when AC is negatively sloped, MC must also be negatively
sloped: it merely says that AC must exceed MC in that circumstance. At Q = S in Fig. 7.3, for
instance, AC is declining but MC is rising, so that their slopes will have opposite signs.
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EXERCISE 7.2

1 Given the total-cost function C = Q° — 50? + 14Q + 75, write out a variable-cost
(VC) function. Find the derivative of the VC function, and interpret the economic
meaning of that derivative.

2 Given the average-cost function AC = Q% — 4Q + 214, find the MC function. Is the
given function more appropriate as a long-run or a short-run function? Why?

3 Differentiate the following by using the product rule:
(a) Ox2—2)3x + 1) (d) (ax — b)(ex?)
(b) (Bx + 11)(6x2 = 5x)  (e) (2 = 3x)(1 + x)(x + 2)
(¢) x*(4x + 6) (f) (x> +3)x7!
/i 4 (a) Given AR = 60 — 30, plot the average-revenue curve, and then find the MR curve
by the method used in Fig, 7.2.
(b) Find the total-revenue function and the marginal-revenue function mathematically
. from the given AR function
(¢) Does the graphically derived MR curve in (a) check with the mathematically
derived MR function in (b)?
(d) Comparing the AR and MR functions, what can you conclude about their relative
slopes?
5 Provide a mathematical proof for the general result that, given a linear average curve,

‘the corresponding marginal curve must have the same vertical intercept but will be twice
as steep as the average curve.

76 Prove the result in (7.6) by first treating g(x)Ah(x) as a single function, g(x)h(x) = ¢(x),
and then applying the product rule (7.4).

7 Find the derivatives of:
(a) (x2+3)/x (¢) 4x/(x + 5)
(b) (x+7/x (d) (ax? + b)/(cx + d)
8 Given the function f(x) = ax + b, find the derivatives of:

(@) f(x) (b) xf(x) () 1/f(x) (d) f(x)/x

7.3 RULES OF DIFFERENTIATION INVOLVING FUNCTIONS OF
DIFFERENT VARIABLES

In the preceding section, we discussed the rules of differentiation of a sum,
difference, product, or quotient of two (or more) differentiable functions of the
same variable. Now we shall consider cases where there are two or more
differentiable functions, each of which has a distinct independent variable.

Chain Rule

If we have a function z = f(y), where y is in turn a function of another variable
x, say, y = g(x), then the derivative of z with respect to x is equal to the
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derivative of z with respect to y, times the derivative of y with respect to x.
Expressed symbolically,

(111) o= = @ dx =f'(y)g'(x)

This rule, known as the chain rule, appeals easily to intuition. Given a Ax, there
must result a corresponding Ay via the function y = g(x), but this Ay will in turn
bring about a Az via the ion z = f(y). Thus there is a “chain reaction” as
follows: I

via g viaf

Ax - Ay - Az

The two links in this chain entail two difference quotients, Ay/Ax and Az/Ay,
but when they are multiplied, the Ay will cancel itself out, and we end up with

‘Az Ay Az
Ay Ax  Ax
a difference quotient that relates Az to Ax. If we take the limit of these difference
quotients as Ax — 0 (which implies Ay — 0), each difference quotient will turn
into a derivative; i.e., we shall have (dz/dy)(dy/dx) = dz/dx. This is precisely
_the result in (7.11).
In view of the function y = g(x), we can express the function z = f(y) as
'z = f[g(x)], where the contiguous appearance of the two function symbols f and
g indicates that this is a composite function (function of a function). It is for this
reason that the chain rule is also referred to as the composite-function rule or
function-of-a-function rule.
. The extension of the chain rule to three or more functions is straightforward.
If we have z = f(y), y = g(x), and x = h(w), then

dz _ dzdy dx _ e\ 1
dw - dy dx dw —f(y)g(X)h(W)

and similarly for cases in which more functions are involved.

Example 1 1f z = 3y% wherey = 2x + 5, then

dz _dzdy _ 1oy =

Example 2 1f z = y— 3, where y = x3,_t_l_1_en
dz . .

—= = 1(3x?) = 3x?
e (3x?%) x

Example 3 The usefulness of this rule can best be appreciated when we must
differentiate a function such as z = (x? + 3x — 2)"". Without the chain rule at
our disposal, dz/dx can be found only via the laborious route of first multiplying
out the 17th-power expression. With the chain rule, however, we can take a
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shortcut by defining a new, intermediate variable y = x + 3x — 2, so that we get
in effect two functions linked in a chain:

z=y" and y=x*+3x-2

The derivative dz /dx can then be found as follows:

Eem 179" (2x + 3) = 17(x2 + 3x — 2)"°(2x + 3)

Example 4 Given a total-revenue function of a firm R = f(Q), where output Q _
is a function of labor input L, or Q = g(L), find dR/dL. By the chain rule, we
have ' -

dR dRd4dQ .
E_Ei_f(Q)g(L)

Translated into_economic terms, dR/dQ is the MR function and dQ/dL is the
margmal -physical-product-¢ -of-labor _(MPP, ) function. Similarly, dR/dL has

the connotation of the marginal-revenue-product-of-labor (MRP,) function. Thus
the result shown above constitutes the mathematical statement of the well-known
result in economics that MRP, = MR - MPP, .

Inverse-Function Rule I !

If the function y = f(x) represents a one-to-one mapping, i.e., if the function is
such that a different value of x will always yield a different value of y, the
function f will have an inverse function x = f{~!(y) (read: “x is an inverse function
of y ). Here, the symbol f~! is a function symbol which, like the derivative-func-
tion symbol f*, signifies a function related to the function f; it does not mean the
reciprocal of the function f(x).

What the existence of an inverse function essentially means is that, in this
case, not only will a given value of x yield a unique value of y [that is, y = f(x)],
but also a given value of y will yield a unique value of x. To take a nonnumerical
instance, we may exemplify the one-to-one mapping by the mapping from the set
of all husbands to the set of all wives in a monogamous society. Each husband
has a unique wife, and each wife has a unique husband. In contrast, the mapping
from the set of all fathers to the set of all sons is not one-to-one, because a father
may have more than one son, albeit each son has a unique father.

When x and y refer specifically to numbers, the property of one-to-one
mapping is seen to be unique to the class of functions known as monotonic
functions. Given a function f(x), if successively larger values of the independent
variable x always lead to successively larger values of f ( x), that 1s, if

X, >x, = f(xl) >f(x2) )

then the function f is said to be an increasing (or monotonically increasing)
: T eeere)
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function.* If successive increases in x always lead to successive decreases in f(x),
that is, if ~ - '

X, >x;, = f(x) <f(xy)

on the other hand, the function is said to be a decreasing (or monotonically
decreasing) function. In either of these cases, an inverse function f~! exists. o
~ A practical way of ascertaining the monotonicity of a given function y = f(x)
is to check whether the derivative f’(x) always adheres to the same algebraic sign -
(not zero) for all values of x. Geometrically, this means that its slope is either
always upward or always downward. Thus a firm’s demand curve Q = f(P) that
has a negative slope throughout is monotonic. As such, it has an inverse function
P = f~'(Q), which, as mentioned previously, gives the average-revenue curve of
the firm, since P = AR. - T -

Example 5 The function

’_.; = 5x + 23_7
has the derivative dy/dx;wﬁ‘, which is positive regardless of the value of x; thus
the function is monotonic. (In this case it is increasing, because the derivative is
positive.) It follows that an inverse function exists. In the present case, the inverse

function is easily found by solving the given equation y = 5x + 25 for x. The
result is the function . Se-d-z ¢

X=%y—_5 x.‘_,_fd...j'
It is interesting to note that this inverse function is also monotonic, and

increasing, because dx/dy = 1+ > 0 for all values of y.

Generally speaking, if an inverse function exists, the original and the inverse
functions must both be monotonic. Moreover, if /' is the inverse function of f,
then f must be the inverse function of f'; that is, f and /~' must be inverse _
functions of each other.

It is easy to verify that the graph of y = f(x) and that of x = f~!(y) are one __
and the same, only with the axes reversed. If one lays the x axis of the /' graph
over the x axis of the f graph (and similarly for the y axis), the two curves will
coincide. On the other hand, if the x axis of the f~ I graph is laid over the y axis of

* Some writers prefer to define an increasing function as a function with the property that
x>x; = f(x))=f(x3) [with a weak inequality]
and then reserve the term strictly increasing function for the case where
xp>x; = f(x)>f(x3) [with a strict inequality]

Under this usage, an ascending step function qualifies as an increasing (though not strictly increasing)
function, despite the fact that its graph contains horizontal segments. We shall not follow this usage in
the present book. Instead, we shall consider an ascending step function to be, not an increasing
function, but a nondecreasing one. By the same token, we shall regard a descending step function not
as a decreasing function, but as a nonincreasing one.
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the f graph (and vice versa), the two curves will become mirror images of each
other with reference to the 45° llne e drawn through the origin. This mirror- 1mage
relationship provides us with an easy way of graphing the inverse function f ',
once the graph of the original function fis given. (You should try this with the
two functions in Example 5.)

For inverse funcuons the rule of d1ﬁ"erent1at10n is

a1 oy

dy  dy/dx T 9y
This means that the derivative of the inverse function is the reciprocal of the
derivative of the original function; as such, dx/dy must take the same sign as
dy/dx, so that if f is increasing (decreasing), then so must be f~'. o

As a verification of this rule, we can refer back to Example 5, where dy/dx
was found to be 5, and dx/dy equal to %. These two derivatives are indeed
reciprocal to each other and have the same sign.

In that simple example, the inverse function is relatively easy to obtain, so
that its derivative dx/dy can be found directly from the inverse function. As the
next example shows, however, the inverse function is sometimes difficult to
express explicitly, and thus direct differentiation may not be practicable. The
usefulness of the inverse-function rule then becomes more fully apparent.

Example 6 Giveny = x* + x, find (dx/dy. First of all, since
dy ~— 3

Y o 4 . )
e 5x*+1>0 i

for any value of x, the given function is monotonically increasing, and an inverse
function exists. To solve the given equation for x may not be such an easy task,
but the derivative of the inverse function ¢ag gevertheless be found quickly by use
of the inverse-function rule:

dx 1 1

&y T dy/dx T sxt |

The inverse-function rule is, strictly speaking, applicable only when the
function involved is a one-to-one mapping. In fact, however, we do have some
leeway. For instance, when dealing with a U-shaped curve (not monotonic), we
may consider the downward- and the upward-sloping segments of the curve as
representing two separate functions, each with a restricted domain, and each
being monotonic in the restricted domain. To each of these, the inverse-function
rule can then again be applied.

EXERCISE 7.3

1 Giveny = u® + 1, where u = 5 — x?, find dy/dx by the chain rule.
2 Given w = ay? and y = bx? + cx, find dw/dx by the chain rule.
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3 Use the chain rule to find dy/dx for the following;:

(a) y = (3x* - 13)° (b) y = (8x* = 5)° (c) y =(ax + b)*
4 Given y = (16x + 3)72, use the chain rule to find dy/dx. Then rewrite the function as
y = 1/(16x + 3)* and find dy/dx by the quotient rule. Are the answers identical?

5 Given y = 7x + 21, find its inverse function. Then find dy /dx and dx/dy, and verify the
inverse-function rule. Also verify that the graphs of the two functions bear a mirror-image
relationship to each other.

6 Are the following functions monotonic? .
(@) y=—-x*+5 (x>0) (b) y=4x>+ x>+ 3x
For each monotonic function, find dx/dy by the inverse-function rule.

7.4 PARTIAL DIFFERENTIATION

Hitherto, we have considered only the derivatives of functions of a single
independent variable. In comparative-static analysis, however, we are likely to
encounter the situation in which several parameters appear in a model, so that the
equilibrium value of each endogenous variable may be a function of more than
one parameter. Therefore, asa final preparation for the application of the concept
of derivative to comparative statics, we must learn how to find the derivative of a
function of more than one variable.

e

Partial Derivatives
-

Let us consider a function

(7]2) y=f(xl’x2""'xn)

where the variables x, (i = 1,2,..., n) are all independent of one another, so that
each can vary by itself without affecting the others. If the variable x, undergoes a

change Ax, while x,,..., x, all remain fixed, there will be a corresponding change
in y, namely, Ay. The difference quotient in this case can be expressed as

,A}’ f(xl+Ax|9x2!---, x,,)—f(xl,xz,...,x,,)
(7.13) QKZ: is

If we take the limit of Ay/Ax, as Ax, — 0, that limit will constitute a derivative.
We call it the partial derivative of y with respect to x,, to indicate that all the )
other independent variables in the function are held constant when taking this
particular derivative. Similar partial derivatives can be defined for infinitesimal
changes in the other independent variables. The process of taking partial deriva-
tives is called partial differentiation. T -
Partial derivatives are assigned distinctive symbols. In lieu of the letter d (as
in dy/dx), we employ the symbol d, which is a variant of the Greek & (lower case
delta). Thus we shall now write dy/dx;, which isﬂr_f_:fi‘d : “the partial derivative of y
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with respect to x,.” The partial-derivative symbol sometimes is also written as

ox. s in that case, its d/dx; part can be regarded as an operator symbol

lnstructmg us to take the partial derlvatlve of (some function) with respect to the
variable x,. Since the function inyolved here is denoted in (7.12) by f, it is also
perm1551ble to write df/dx,. A }
Is there also a partial- derlvatlve counterpart for the symbol f’(x) that we

used before? The answer is yes. Instead of f’, however, we now use f}, f,, etc.,
where the subscript indicates which independent variable (alone) is being allowed
to vary. If the function in (7.12) happens to be written in terms of unsubscripted
variables, such as y = f(u, v, w), then the partial derivatives may be denoted by
f.s f,» and f, rather than f,, f,, and f,.
" In line with these notations, and on the basis of (7.12) and (7.13), we can now
define

9y _ Ay
fl 3x| - A}(lln;lbo Ax]

as the first in the set of n partial derivatives of the function f.

Techniques of Partial Differentiation

Partial differentiation differs from the previously discussed differentiation pri-
marily in that we must hold (n — 1) independent variables constant while allow-
ing one variable to vary. Inasmuch as we have learned how to handle constants in
differentiation, the actual differentiation should pose little problem.

Example 1 Given y = f(x, x,) = 3x? + x,x, + 4x3, find the partial deriva-
tives. When finding dy/dx, (or f,), we must bear in mind that x, is to be treated
as a constant during differentiation. As such, x, will drop out in the process if it is_
an ‘additive constant (such as the term 4x§) but will be retained if it is a
mumph'catiue constant (such as_in_the term x,x,). Thus we have __

(\ a_x,‘f' 6x, + xﬁ
Simllarly, by treating x, as a constant, we find that

a—xz—fz x,+8x2

Note that, like the primitive function f, both partial derivatives are them-

selves functions of the variables x, and x,. That is, we may write them as two
derlved functions 7

fl(xl! z) and _fz(xhxz)

parual derivatives will take the followmg specific values:

CA(1L,3) = 6(1) + 3 —b\ and \ f,(1,3)=1+8(3) =
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Example 2 Giveny = f(u,v) = (u + 4)(3u + 2v), the partial derivatives can be
found by use of the product rule. By holding v constant, we have

fi=(u+4)3)+103u+20)=203u+ v+ 6)
Similarly, by holding u constant, we find that
fo=(u+4)(2) +03u +2v) = 2(u+ 4)
When u = 2 and v = 1, these derivatives will take the following values:
£,(2,1)=2(13) = 26 and  f£,(2,1) =2(6)=12
Example 3 Given y = (3u — 2v)/(u? + 3v), the partial derivatives can be
found by use of the quotient rule: —
dy _ 3(u?+30) —2u(3u—2v) _ —3u + 4uv + 9o

du (u? + 3v) (u? + 3v)
ay _ —2(u® + 3v) = 33w —2v) _ —u(Qu+9)
do (u? + 31))2 (u?+ 30)2

Geometric Interpretation of Partial Derivatives

As a special type of derivative, a partial derivative is a measure of the instanta-
neous rates of change of some variable, and in that capacity it again has a
geometric counterpart in the slope of a particular curve.

Let us consider a production function Q = Q(K, L), where Q, K, and L
denote output, capital input, and labor input, respectively. This function is a
particular two-variable version of (7.12), with n = 2. We can therefore define two
partial derivatives dQ /dK (or Q) and dQ/dL (or Q,). The partial derivative
Q relates to the rates of change in output with respect to infinitesimal changes in
capital, while labor input is held constant. Thus Q4 symbolizes the marginal-
physical-product-of-capital (MPP ) function. Similarly, the partial derivative Q,
is the mathematical representation of the MPP, function.

Geometrically, the production function Q = Q(K, L) can be depicted by a
production surface in a 3-space, such as is shown in Fig. 7.4. The variable Q is
plotted vertically, so that for any point (K, L) in the base plane (KL plane), the
height of the surface will indicate the output Q. The domain of the function
should consist of the entire nonnegative quadrant of the base plane, but for our
purposes it is sufficient to consider a subset of it, the rectangle OKyBL,. As a
consequence, only a small portion of the production surface is shown in the
figure.

Let us now hold capital fixed at the level K, and consider only variations in
the input L. By setting K = K;, all points in our (curtailed) domain become
irrelevant except those on the line segment K;B. By the same token, only the
curve K,CDA (a cross section of the production surface) will be germane to the
present discussion. This curve represents a total-physical-product-of-labor (TPP; )
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Figure 7.4

curve for a fixed amount of capital K = K; thus we may read from its slope the
rate of change of Q with respect to changes in L while K is held constant. It is
clear, therefore, that the slope of a curve such as K, CDA represents the geometric
counterpart of the partial derivative Q,. Once again, we note that the slope of a
total (TPP, ) curve is its corresponding marginal (MPP, = Q,) curve.

It was mentioned earlier that a partial derivative is a function of all the
independent variables of the primitive function. That Q, is a function of L is
immediately obvious from the K,CDA curve itself. When L = L, the value of Q,
1s equal to the slope of the curve at point C; but when L = L,, the relevant slope
1s the one at point D. Why is Q; also a function of K? The answer is that K can
be fixed at various levels, and for each fixed level of K, there will result a different
TPP, curve (a different cross section of the production surface), with inevitable
repercussions on the derivative Q,. Hence Q; is also a function of K.

An analogous interpretation can be given to the partial derivative Q. If the
labor input is held constant instead of K (say, at the level of L), the line segment
L, B will be the relevant subset of the domain, and the curve L4 will indicate the
relevant subset of the production surface. The partial derivative Q can then be
interpreted as the slope of the curve L,A4—bearing in mind that the K axis
extends from southeast to northwest in Fig. 7.4. It should be noted that Qg is
again a function of both the variables L and K.

EXERCISE 74

1 Find dy/dx, and dy/dx, for each of the following functions:
(a) y = 2x} — llxix, + 3x2 €©)y=0Qx; +3)(x; —2)
(b) y = Tx; + 5x,x3 — 9x3 (d) y = (4x, +3)/(x; - 2)
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2 Find f, and f, from the following:

@ S =1+ 5=y (@) fin) = Bt

(B) £ )= (= 30— (@) S ) = 2
3 From the answers to the preceding problem, find f,(1,2)—the value of the partial
derivative f, when x = 1 and y = 2—for each function.

4 Given the production function Q = 96K ®3L%7, find the MPP;. and MPP; functions. Is
MPP;, a function of K alone, or of both K and L? What about MPP,?

5 If the utility function of an individual takes the form

U=U(x),x;)=(x, + 2)2(x2 + 3)3

where U is total utility, and x, and x, are the quantities of two commodities consumed:
(a) Find the marginal-utility function of each of the two commodities.
(b) Find the value of the marginal utility of the first commodity when 3 units of each
commodity are consumed.

75 APPLICATIONS TO COMPARATIVE-STATIC ANALYSIS

Equipped with the knowledge of the various rules of differentiation, we can at last
tackle the problem posed in comparative-static analysis: namely, how the equi-
librium value of an endogenous variable will change when there is a change in any
of the exogenous variables or parameters.

Market Model

First let us consider again the simple one-commodity market model of (3.1). That
model can be written in the form of two equations:

Q=a-bP (a,b>0) [demand]
Q= —c+dP (¢, d>0) [supply]
with solutions
- a+c
(7.14) P = b+ d
— ad - bc
(15)  0=T5a

These solutions will be referred to as being in the reduced form:. the two
endogenous variables have been reduced to explicit expressions of the four
mutually independent parameters a, b, c, and d.

To find how an infinitesimal change in one of the parameters will affect the
value of P, one has only to differentiate (7.14) partially with respect to each of the
parameters. If the sign of a partial derivative, say, dP/da, can be determined



RULES OF DIFFERENTIATION AND THEIR USE IN COMPARATIVE STATICS 179

from the given information about the parameters, we shall know the direction in
which P will move when the parameter a changes; this constitutes a qualitative
conclusion. If the magnitude of dP/da can be ascertained, it will constitute a
quantitative conclusion.

Similarly, we can draw qualitative or quantitative conclusions from the
partial derivatives of Q with respect to each parameter, such as 3Q /da. To avoid
misunderstanding, however, a clear distinction should be made between the two
derivatives dQ /da and dQ/da. The latter derivative is a concept appropriate to
the demand function taken alone, and without regard to the supply function. The
derivative dQ/da pertains, on the other hand, to the equilibrium quantity in
(7.15) which, being in the nature of a solution of the model, takes into account the
interaction of demand and supply together. To emphasize this distinction, we
shall refer to the partial derivatives of P and Q with respect to the parameters as
comparative-static derivatives.

Concentrating on P for the time being, we can get the following four partial
derivatives from (7.14):

9P _ 1 [ ter a has the coefficient —

%2 b+d parameter a has the coefficient ;——

_ ., ) |
%_1; _0(b +(¢2)+ ; )( +c) _ (;: ;2) [quotient rule]

oP_ 1 (_oF

dc b+d\ da
_@I_O(b+d)—l(a+c)=—(a+c)(__{;‘_}z)

9d (b+d) (b+d)? \ b

Since all the parameters are restricted to being positive in the present model, we
can conclude that '
aF 9P aP 9P
da  dc b ad

For a fuller appreciation of the results in (7.16), let us look at Fig. 7.5, where
each diagram shows a change in one of the parameters. As before, we are plotting
Q (rather than P) on the vertical axis.

Figure 7.5a pictures an increase in the parameter a (to a’). This means a
higher vertical intercept for the demand curve, and inasmuch as the parameter b
(the slope parameter) is unchanged, the increase in a results in a parallel upward
shift of the demand curve from D to D’. The intersection of D’ and the supply
curve S determines an equilibrium price P’, which is greater than the old
equilibrium price P. This corroborates the result that dP/da > 0, although for
the sake of exposition we have shown in Fig. 7.5 a much larger change in the
parameter a than what the concept of derivative implies.

The situation in Fig. 7.5¢ has a similar interpretation; but since the increase
takes place in the parameter c, the result is a parallel shift of the supply curve

(7.16) >0 and <0
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instead. Note that this shift is downward because the supply curve has a vertical
intercept of —¢; thus an increase in ¢ would mean a change in the intercept, say,
from —2 to —4. The graphical comparative-static result, that P’ exceeds P, again
conforms to what the positive sign of the derivative dP/dc would lead us to
expect.

Figures 7.5b and 7.5d illustrate the effects of changes in the slope parameters
b and d of the two functions in the model. An increase in b means that the slope
of the demand curve will assume a larger numerical (absolute) value; i.e., it will
become steeper. In accordance with the result P /db < 0, we find a decrease in P
in this diagram. The increase in d that makes the supply curve steeper also results
in a decrease in the equilibrium price. This is, of course, again in line with the
negative sign of the comparative-static derivative dP/dd.

Thus far, all the results in (7.16) seem to have been obtainable graphically. If
so, why should we bother to learn differentiation at all? The answer is that the
differentiation approach has at least two major advantages. First, the graphical
technique is subject to a dimensional restriction, but differentiation is not. Even

(Increase in b)

(Increase in a)

/ I
_?" // %_% - p
o

(c) (d)

Figure 7.5
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when the number of endogenous variables and parameters is such that the
equilibrium state cannot be shown graphically, we can nevertheless apply the
differentiation techniques to the problem. Second, the differentiation method can
yield results that are on a higher level of generality. The results in (7.16) will
remain valid, regardless of the specific values that the parameters a, b, ¢, and d
take, as long as they satisfy the sign restrictions. So the comparative-static
conclusions of this model are, in effect, applicable to an infinite number of
combinations of (linear) demand and supply functions. In contrast, the graphical
approach deals only with some specific members of the family of demand and
supply curves, and the analytical result derived therefrom is applicable, strictly
speaking, only to the specific functions depicted.

The above serves to illustrate the application of partial differentiation to
comparative-static analysis of the simple market model, but only half of the task
has actually been accomplished, for we can also find the comparative-static
derivatives pertaining to Q. This we shall leave to you as an exercise.

/ >Nati0nal-lncome Model

In place of the simple national-income model discussed in Chap. 3, let us study a
slightly enlarged model with three endogenous variables, Y (national income), C
(consumption), and T (taxes):

Y=C+10+GO
(717) C=a+B(Y-T) (a>0; 0<B<1)
T=vy+38Y (y>0;, 0<é<1)

The first equation in this system gives the equilibrium condition for national
income, while the second and third equations show, respectively, how C and T are
determined in the model.

The restrictions on the values of the parameters a, 8, v, and § can be
explained thus: a is positive because consumption is positive even if disposable
income (Y — T) is zero; B is a positive fraction because it represents the marginal
propensity to consume; v is positive because even if Y is zero the government will
still have a positive tax revenue (from tax bases other than income); and finally, §
is a positive fraction because it represents an income tax rate, and as such it
cannot exceed 100 percent. The exogenous variables I, (investment) and G,
(government expenditure) are, of course, nonnegative. All the parameters and
exogenous variables are assumed to be independent of one another, so that any
one of them can be assigned a new value without affecting the others.

This model can be solved for ¥ by substituting the third equation of (7.17)
into the second and then substituting the resulting equation into the first. The
equilibrium income (in reduced form) is '

a—By+1,+ G,
1 -8+ Bd

(7.18) Y=
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Similar equilibrium values can also be found for the endogenous variables C and
T, but we shall concentrate on the equilibrium income.

From (7.18), there can be obtained six comparative-static derivatives. Among
these, the following three have special policy significance:

Y 1

(7.19) T?'(—;; = mhg >0
Yy —
020 G- T <
Y -B(a- I,+G -BY
(7.21) ‘Z—}; = B(:‘l —?:B;; o) _ — BBI 55 <0 [y(19)]

The partial derivative in (7.19) gives us the government-expenditure multiplier. 1t
has a positive sign here because S is less than 1, and 86 is greater than zero. If
numerical values are given for the parameters 8 and 6, we can also find the
numerical value of this multiplier from (7.19). The derivative in (7.20) may be
called the nonincome-tax multiplier, because it shows how a change in vy, the
government revenue from nonincome-tax sources, will affect the equilibrium
income. This multiplier is negative in the present model because the denominator
in (7.20) is positive and the numerator is negative. ‘Lastly, the partial derivative in
(7.21) represents an income-tax-rate multiplier. For any positive equilibrium
income, this multiplier is also negative in the model.

Again, note the difference between the two derivatives 9Y/dG, and 9Y/dG,,.
The former is derived from (7.18), the expression for the equilibrium income. The
latter, obtainable from the first equation in (7.17), is dY/dG, = 1, which is
altogether different in magnitude and in concept.

Input-Output Model

The solution of an open input-output model appears as a matrix equation
X = (I — A)"'d. If we denote the inverse matrix (/ — A)~' by B = [b], then,
for instance, the solution for a three-industry economy can be written as X = Bd,
or

fI Ibll bll bIZ dl
(7-22) X = bzi lf’22 bzs dz
X3 b3l 532 bss dz

What will be the rates of change of the solution values x; with respect to the
exogenous final demands d,, d,, and 4,? The general answer is that

0x; .
(7.23) E—d:-_—bjk (],k= ],2,3)
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To see this, let us multiply out Bd in (7.22) and express the solution as

=)

: by d, + bj,d, + by3d,
2| = | byd, + bypd; + byd,
3 b3ldl + bszdz + b33d3

= =

In this system of three equations, each one gives a particular solution value as a
function of the exogenous final demands. Partial differentiation of these will
produce a total of nine comparative-static derivatives:

9%, 9%, 9%,

ad, = by 8d2=b‘2 3d3=b'3
, afz _ afz _ afz _
(7-23) adl - b21 adz - b22 ad3 - b23
ox_,am o 0m
adl ]| adz - Y32 3d3 — P33

This is simply the expanded version of (7.23).
Reading (7.23’) as three distinct columns, we may combine the three deriva-
tives in each column into a matrix (vector) derivative:

ax o |T % x |02 x| P

. »” —_— | X = b —_— = _— = b
(7 23 ) adl adl fZ 21 adz b22 ad: 23
X3 31 by, 33

Since the three column vectors in (7.23") are merely the columns of the matrix B,
by further consolidation we can summarize the nine derivatives in a single matrix
derivative dx /dd. Given X = Bd, we can simply write

_ L b12 b13
ax
ﬁ= bn bzz bzs =B
b3] bs, bsa

This is a compact way of denoting all the comparative-static derivatives of our
open input-output model. Obviously, this matrix derivative can easily be extended
from the present three-industry model to the general n-industry case.

Comparative-static derivatives of the input-output model are useful as tools
of economic planning, for they provide the answer to the question: If the
planning targets, as reflected in (d,, d,,..., d,,), are revised, and if we wish to
take care of all direct and indirect requirements in the economy so as to be
completely free of bottlenecks, how must we change the output goals of the n
industries?
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EXERCISE 7.5

1 Examine the comparative-static properties of the equilibrium quantity in (7.15), and
check your results by graphic analysis.

2 On the basis of (7.18), find the partial derivatives dY/d1,, dY/da, and 3Y/3B.
Interpret their meanings and determine their signs.

3 The numerical input-output model (5.21) was solved in Sec. 5.7.
(a) How many comparative-static derivatives can be derived?
(b) Write out these derivatives in the form of (7.23’) and (7.23").

7.6 NOTE ON JACOBIAN DETERMINANTS

The study of partial derivatives above was motivated solely by comparative-static
considerations. But partial derivatives also provide a means of testing whether
there exists functional (linear or nonlinear) dependence among a set of n func-
tions in n variables. This is related to the notion of Jacobian determinants (named
after Jacobi).

Consider the two functions

» =2x, + 3x,
(7.24)
¥, = 4x7 + 12x,x, + 9x2

If we get all the four partial derivatives

N _, n_, n

dx, dx, dx,

3
= 8x, + 12x, a—x% = 12x, + 18x,
2

and arrange them into a square matrix in a prescribed order, called a Jacobian
matrix and denoted by J, and then take its determinant, the result will be what is
known as a Jacobian determinant (or a Jacobian, for short), denoted by |J|:

LATRNO

Gx, 3x2 2 3
(725) M= By, Ay | |Bx +12x,)  (12x, + 18x,)

dx, 0dx,

For economy of space, this Jacobian is sometimes also expressed as

3(}'1-)’2)
(x5 x3)

More generally, if we have n differentiable functions in n variables, not necessarily

V=
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linear,

Y =fl(x1, Xpseuns x")
(126) 2= (xixp.e0,x,)

where the symbol f" denotes the nth function (and not the function raised to the
nth power), we can derive a total of n? partial derivatives. Together, they will give
rise to the Jacobian '

Iy dn o In

dx dx dax

a s ey 1 2 n

(127) | = Oy d) | T
I(xy, Xps-.0, X,) 3y ay ay

ax, 0x, ax,

A Jacobian test for the existence of functional dependence among a set of n
functions is provided by the following theorem: The Jacobian |J| defined in
(7.27) will be identically zero for all values of x,,..., x, if and only if the n
functions f!,..., f" in (7.26) are functionally (linearly or nonlinearly) dependent.

As an example, for the two functions in (7.24) the Jacobian as given in (7.25)
has the value

|J| = (24x, + 36x,) — (24x, + 36x,) =0

That is, the Jacobian vanishes for all values of x, and x,. Therefore, according to
the theorem, the two functions in (7.24) must be dependent. You can verify that
y, is simply y, squared; thus they are indeed functionally dependent—here
nonlinearly dependent.

Let us now consider the special case of linear functions. We have earlier
shown that the rows of the coefficient matrix 4 of a linear-equation system

apx; +apx, + - +a,x, =d
(7.28) anx; + apx, +---+ay,x,=d,

a x, ta,x,+--+a,x,=d,

are linearly dependent if and only if the determinant |4| = 0. This result can
now be interpreted as a special application of the Jacobian criterion of functional
dependence.

Take the left side of each equation in (7.28) as a separate function of the n
variables x,,..., x,, and denote these functions by y,,..., y,. The partial deriva-
tives of these functions will turn out to be dy,/dx, = a,;, dy,/dx, = a,,, etc., so
that we may write, in general, dy,/9x; = a,,. In view of this, the elements of the
Jacobian of these n functions will be precisely the elements of the coefficient
matrix A, already arranged in the correct order. That is, we have |J| = |4|, and
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thus the Jacobian criterion of functional dependence among y,,..., y,—or, what
amounts to the same thing, functional dependence among the rows of the
coefficient matrix A —is equivalent to the criterion |4| = 0 in the present linear
case.

In the above, the Jacobian was discussed in the context of a system of n
functions in n variables. It should be pointed out, however, that the Jacobian in
(7.27) is defined even if each function in (7.26) contains more than n variables,
say, n + 2 variables:

y¢'=fi(xl'!"‘ xra’xn+l?xu+2) (i=l’2""’n)

In such a case, if we hold any two of the variables (say, x, ., and x, , ,) constant,
or treat them as parameters, we will again have n functions in exactly n variables
and can form a Jacobian. Moreover, by holding a different pair of the x variables
constant, we can form a different Jacobian. Such a situation will indeed be
encountered in Chap. 8 in connection with the discussion of the implicit-function
theorem.

EXERCISE 7.6

1 Use Jacobian determinants to test the existence of functional dependence between the
functions paired below: '

(a) y, =3x% + x, (b) yi = 3x{ + 2x3

Yy = 9x + 6x7(x, + 4) + x2(x, + 8)+ 12 y2="5x +1

2 Consider (7.22) as a set of three functions X, = f'(d,, d,, d;) (with i = 1,2,3).

(a) Write out the 3 X 3 Jacobian. Does it have some relation to (7.23')? Can we write
|| = |B?

(b) Since B = (I — A)™!, can we conclude that |B| # 0? What can we infer from this
about the three equations in (7.22)?




