CHAPTER

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.

- H
.

.

.

Mathematics for Microeconomics

Microeconomic models are constructed using a wide variety of mathematical techniques. In this chapter we
provide a brief summary of some of the most important techniques that you will encounter in this book. A major
portion of the chapter concerns mathematical procedures for finding the optimal value of some function.
Because we will frequently adopt the assumption that an economic actor seeks to maximize or minimize some
function, we will encounter these procedures (most of which are based on differential calculus) many times.
After our detailed discussion of the calculus of optimization, we turn to four topics that are covered more
briefly. First, we look at a few special types of functions that arise in economic problems. Knowledge of
properties of these functions can often be very helpful in solving economic problems. Next, we provide a
brief summary of integral calculus. Although integration is used in this book far less frequently than is
differentiation, we will nevertheless encounter several situations where we will want to employ integrals to
measure areas that are important to economic theory or to add up outcomes that occur over time or across
many individuals. One particular use of integration is to examine problems in which the objective is to
maximize a stream of outcomes over time. Our third added topic focuses on techniques to be used for such
problems in dynamic optimization. Finally, Chapter 2 concludes with a brief summary of mathematical
statistics, which will be particularly useful in our study of economic behavior in uncertain situations.

MAXIMIZATION OF A FUNCTION OF ONE VARIABLE

Let’s start our study of optimization with a simple example. Suppose that a manager of a firm
desires to maximize® the profits received from selling a particular good. Suppose also that the
profits () received depend only on the quantity (g) of the good sold. Mathematically,

7= f(q). (2.1)

Figure 2.1 shows a possible relationship between m and 4. Clearly, to achieve maximum
profits, the manager should produce output ¢*, which yields profits m*. If a graph such as
that of Figure 2.1 were available, this would seem to be a simple matter to be accomplished
with a ruler.

Suppose, however, as is more likely, the manager does not have such an accurate picture
of the market. He or she may then try varying g to see where a maximum profit is obtained.
For example, by starting at g,, profits from sales would be ;. Next, the manager may try
output ¢,, observing that profits have increased to m,. The commonsense idea that profits
have increased in response to an increase in 4 can be stated formally as

u>0 or A—Tr>0, (2.2)
5~ h Ag

"Here we will generally explore maximization problems. A virtually identical approach would be taken to study minimiza-
tion problems because maximization of f(x) is equivalent to minimizing —f'(x).
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20 Part 1 Introduction

FIGURE 2.1 Hypothetical Relationship between Quantity Produced and Profits

If a manager wishes to produce the level of output that maximizes profits, then 4™ should be
produced. Notice that at 4%, dw/dg = 0.
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where the A notation is used to mean “the change in” 7 or 4. As long as Aw/Ag is positive,
profits are increasing and the manager will continue to increase output. For increases in
output to the right of 4%, however, Am/Ag will be negative, and the manager will realize that
a mistake has been made.

Derivatives

As you probably know, the limit of At /Agq for very small changes in 4 is called the derivative
of the function, m = £(g), and is denoted by dw/dg or df /dg or f'(g). More formally, the
derivative of a function ™ = f'(g) at the point g, is defined as

dn _df . flp+h)—fla)
dqg  dg im 2 ' (2.3)

Notice that the value of this ratio obviously depends on the point g, that is chosen.

Value of the derivative at a point

A notational convention should be mentioned: Sometimes one wishes to note explicitly the
point at which the derivative is to be evaluated. For example, the evaluation of the derivative
at the point 4 = 4, could be denoted by

an
an
At other times, one is interested in the value of dw/dg for all possible values of 4 and no

explicit mention of a particular point of evaluation is made.
In the example of Figure 2.1,

(2.4)

=N

d

d_q >0,

=N

whereas
dm
Ay
What is the value of dw/dq at 4™ It would seem to be 0, because the value is positive for
values of 7 less than 4* and negative for values of g4 greater than 4*. The derivative is the
slope of the curve in question; this slope is positive to the left of 4% and negative to the right
of g*. At the point 4%, the slope of f(g) is 0.

< 0.

=13



Chapter 2 Mathematics for Microeconomics

First-order condition for a maximum

This result is quite general. For a function of one variable to attain its maximum value at some
point, the derivative at that point (if it exists) must be 0. Hence, if a manager could estimate
the function £(g) from some sort of real-world data, it would theoretically be possible to find
the point where Af /dq = 0. At this optimal point (say, %),

i =0. (2.5)
aq =g

Second-order conditions

An unsuspecting manager could be tricked, however, by a naive application of this first-
derivative rule alone. For example, suppose that the profit function looks like that shown in
cither Figure 2.2a or 2.2b. If the profit function is that shown in Figure 2.2a, the manager, by
producing where dw/dg =0, will choose point 4. This point in fact yields minimum,
not maximum, profits for the manager. Similarly, if the profit function is that shown in
Figure 2.2, the manager will choose point 4, which, although it yields a profit greater than
that for any output lower than 47, is certainly inferior to any output greater than ;. These
situations illustrate the mathematical fact that dmw/dg =0 is a mecessary condition for a
maximum, but not a sufficient condition. To ensure that the chosen point is indeed a
maximum point, a second condition must be imposed.

Intuitively, this additional condition is clear: The profit available by producing either a bit
more or a bit less than 4* must be smaller than that available from g*. If this is not true,
the manager can do better than ¢*. Mathematically, this means that dm/dgq must be greater

FIGURE 2.2 Two Profit Functions That Give Misleading Results If the First Derivative
Rule Is Applied Uncritically

21

In (a), the application of the first derivative rule would result in point 4. being chosen. This point is
in fact a point of minimum profits. Similarly, in (b), output level 4; would be recommended by the
first derivative rule, but this point is inferior to all outputs greater than g;. This demonstrates
graphically that finding a point at which the derivative is equal to 0 is a necessary, but not a sufficient,
condition for a function to attain its maximum value.

q, Quantity 9,
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Introduction

than 0 for g4 < 4% and must be less than 0 for g > 4*. Therefore, at 4%, dmw/dgq must be
decreasing. Another way of saying this is that the derivative of dm/dg must be negative at g*.

Second derivatives
The derivative of a derivative is called a second derivative and is denoted by

A*m a?
d—qz or # or f(q)

The additional condition for g* to represent a (local) maximum is therefore

A’
dg?
where the notation is again a reminder that this second derivative is to be evaluated at 4*.
Hence, although Equation 2.5 (dw/dgq = 0) is a necessary condition for a maximum, that
equation must be combined with Equation 2.6 (d*w/dg? < 0) to ensure that the point is a
local maximum for the function. Equations 2.5 and 2.6 together are therefore sufficient
conditions for such a maximum. Of course, it is possible that by a series of trials the manager
may be able to decide on 4* by relying on market information rather than on mathematical
reasoning (remember Friedman’s pool-player analogy). In this book we shall be less interest-
ed in how the point is discovered than in its properties and how the point changes when
conditions change. A mathematical development will be very helpful in answering these
questions.

”

<0, (2.6)
=7

=7

Rules for finding derivatives
Here are a few familiar rules for taking derivatives. We will use these at many places in this book.

1. If 4 is a constant, then

db
—=0.
dx
2. If bis a constant, then
alof (%)) _ .
3. If bis a constant, then
dx®
= b b—1
dx N
4 dlnx _ 1
dx x
where In signifies the logarithm to the base ¢ (= 2.71828).
5. da” = a" In a for any constant a

dx
A particular case of this rule is de¥/dx = ¢&*.

Now suppose that £(x) and g(x) are two tunctions of x and that f'(x) and g'(x) exist. Then:

6. ALf(%) +g(x)]

LI f() + g ().
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7. WS b)) + £ (la ).
g. Afx)/a(x)] _ f(xg(x) - flx)g'(x)
ax [9(x))*
provided that g(x) # 0.
Finally, if y = f(x) and x = g(2) and if both f’(x) and 4'(2) exist, then
dy_dy dv_df d

9. _
dz  dx dz  dx ds’

b

This result is called the chain rule. It provides a convenient way to study how one variable
(2) affects another variable (y) solely through its influence on some intermediate variable
(x). Some examples are

10, 4™ de™ d(ax)

e~ d(ax)  dx == aet
11. #ln(ax)] _ d[ln(ax)] d(ax) _ 1 . 1
dx d(ax) dx  ax x
12 dln(x?)]  dn(x?)] d(x?) 1 e — 2
de  d(x?)  dx &2 YT

FUNCTIONS OF SEVERAL VARIABLES

Economic problems seldom involve functions of only a single variable. Most goals of interest to
economic agents depend on several variables, and trade-ofts must be made among these variables.
For example, the ##ility an individual receives from activities as a consumer depends on the
amount of each good consumed. For a firm’s production function, the amount produced depends
on the quantity of labor, capital, and land devoted to production. In these circumstances, this
dependence of one variable (y) on a series of other variables (x;, &5, ..., %,) is denoted by

y=f(%,%,...,%,). (2.7)

Partial derivatives

We are interested in the point at which y reaches a maximum and in the trade-ofts that must
be made to reach that point. It is again convenient to picture the agent as changing the
variables at his or her disposal (the x’s) in order to locate a maximum. Unfortunately, for a
function of several variables, the idea of #se derivative is not well-defined. Just as the steepness
of ascent when climbing a mountain depends on which direction you go, so does the slope
(or derivative) of the function depend on the direction in which it is taken. Usually, the only
directional slopes of interest are those that are obtained by increasing one of the x’s while
holding all the other variables constant (the analogy for mountain climbing might be to
measure slopes only in a north-south or east-west direction). These directional slopes are
called partial devivatives. The partial derivative of y with respect to (that is, in the direction
of) x, is denoted by

9y o

9%, dx;

or f. or f.

It is understood that in calculating this derivative all of the other »’s are held constant. Again
it should be emphasized that the numerical value of this slope depends on the value of x,

and on the (preassigned) values of x,, ..., x,.
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24 Part 1 Introduction

EXAMPLE 2.1 Profit Maximization

Suppose that the relationship between profits () and quantity produced (g) is given by

m(q) = 1,000 — 54°. (2.8)

A graph of this function would resemble the parabola shown in Figure 2.1. The value of g
that maximizes profits can be found by differentiation:
dw

—=1,000-104=0 2.9
dq b q > ( )

SO

q" =100. (2.10)

At g = 100, Equation 2.8 shows that profits are 50,000—the largest value possible. If, for
example, the firm opted to produce g = 50, profits would be 37,500. At 4 = 200, profits are
precisely 0.

That 4 = 100 is a “global” maximum can be shown by noting that the second derivative
of'the profit function is —10 (see Equation 2.9). Hence, the rate of increase in profits is always
decreasing—up to g4 = 100 this rate of increase is still positive, but beyond that point it
becomes negative. In this example, 4 = 100 is the only local maximum value for the function
. With more complex functions, however, there may be several such maxima.

QUERY: Suppose that a firm’s output (g) is determined by the amount of labor (/) it hires
according to the function g = 2+/1. Suppose also that the firm can hire all of the labor it wants
at $10 per unit and sells its output at $50 per unit. Profits are therefore a function of / given
by (/) = 100v// — 10/. How much labor should this firm hire in order to maximize profits,
and what will those profits be?

A somewhat more formal definition of the partial derivative is

i :lmf(xl—"_h?‘EZ)""En) _f(xl"EZ"")‘En)
0%y h—0 b

) (2.11)

Xyyon X,

where the notation isintended to indicate that x,, ..., x, are all held constant at the preassigned
values x,, ..., X, so the effect of changing x; only can be studied. Partial derivatives with
respect to the other variables (x,, ...,x,) would be calculated in a similar way.

Calculating partial derivatives

It is easy to calculate partial derivatives. The calculation proceeds as for the usual derivative by
treating x,, ..., x,, as constants (which indeed they are in the definition of a partial derivative).
Consider the following examples.

1. Ify = f(x),%) = ax] + bx,x, + cx3, then

of
@:flzmle—i—bxz

and

f

Py =f5 = bxy + 2cx,.
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Notice that df/dx; is in general a function of both »; and &, and therefore its value
will depend on the particular values assigned to these variables. It also depends on the
parameters 2, &, and ¢, which do not change as x; and x, change.

2. Ify=f(x;,%) = e™1+  then

— :fl = a,g”xl+l’xz
90Xy

and

af 5, = beux1+bx2 )

0%,

3. Ity=f(%,%) =alnx + blnwx,, then

af a
a—:fi = —
%y Xy
and
af b
X X

Notice here that the treatment of x, as a constant in the derivation of df /dx; causes the term
b In x, to disappear upon differentiation because it does not change when x; changes. In this
case, unlike our previous examples, the size of the effect of x; on y is independent of the value
of x,. In other cases, the effect of x; on y will depend on the level of x;.

Partial derivatives and the ceteris paribus assumption

In Chapter 1, we described the way in which economists use the ceteris paribus assumption in
their models to hold constant a variety of outside influences so the particular relationship
being studied can be explored in a simplified setting. Partial derivatives are a precise mathe-
matical way of representing this approach; that is, they show how changes in one variable
affect some outcome when other influences are held constant—exactly what economists need
for their models. For example, Marshall’s demand curve shows the relationship between price
(p) and quantity (g) demanded when other factors are held constant. Using partial deriva-
tives, we could represent the slope of this curve by d¢4/dp to indicate the ceteris paribus
assumptions that are in effect. The fundamental law of demand—that price and quantity
move in opposite directions when other factors do not change—is therefore reflected by the
mathematical statement “dg/dp < 0.” Again, the use of a partial derivative serves as a re-
minder of the ceteris paribus assumptions that surround the law of demand.

Partial derivatives and units of measurement

In mathematics relatively little attention is paid to how variables are measured. In fact, most
often no explicit mention is made of the issue. But the variables used in economics usually
refer to real-world magnitudes and therefore we must be concerned with how they are
measured. Perhaps the most important consequence of choosing units of measurement is
that the partial derivatives often used to summarize economic behavior will reflect these units.
For example, if g4 represents the quantity of gasoline demanded by all U.S. consumers during
a given year (measured in billions of gallons) and p represents the price in dollars per gallon,
then d4/dp will measure the change in demand (in billions of gallons per year) for a dollar per
gallon change in price. The numerical size of this derivative depends on how 4 and p are
measured. A decision to measure consumption in millions of gallons per year would multiply
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the size of the derivative by 1,000, whereas a decision to measure price in cents per gallon
would reduce it by a factor of 100.

The dependence of the numerical size of partial derivatives on the chosen units of mea-
surement poses problems for economists. Although many economic theories make predic-
tions about the sign (direction) of partial derivatives, any predictions about the numerical
magnitude of such derivatives would be contingent on how authors chose to measure their
variables. Making comparisons among studies could prove practically impossible, especially
given the wide variety of measuring systems in use around the world. For this reason, econ-
omists have chosen to adopt a different, unit-free way to measure quantitative impacts.

Elasticity—A general definition

Economists use elasticities to summarize virtually all of the quantitative impacts that are of
interest to them. Because such measures focus on the proportional effect of'a change in one
variable on another, they are unit-free—the units “cancel out” when the elasticity is calculated.
Suppose, for example, that y is a function of x and, possibly, other variables. Then the elasticity
of y with respect to x (denoted as ¢, ) is defined as

Ay
€ :i:g.fzg.f
» Ax Ax oy ox oy
x

(2.12)

Notice that, no matter how the variables y and x are measured, the units of measurement
cancel out because they appear in both a numerator and a denominator. Notice also that,
because y and x are positive in most economic situations, the elasticity ¢, , and the partial
derivative dy/dx will have the same sign. Hence, theoretical predictions about the direction
of certain derivatives will also apply to their related elasticities.

Specific applications of the elasticity concept will be encountered throughout this book.
These include ones with which you should be familiar, such as the market price elasticity of
demand or supply. But many new concepts that can be expressed most clearly in elasticity
terms will also be introduced.

EXAMPLE 2.2 Elasticity and Functional Form

The definition in Equation 2.12 makes clear that elasticity should be evaluated at a specific
point on a function. In general the value of this parameter would be expected to vary across
different ranges of the function. This observation is most clearly shown in the case where yisa
linear function of x of the form

¥ = a + bx + other terms.

In this case,
Yy x x x
== .2y Z=p. — = 2.13
brx = 9x y y a+bx+-0 2.13)

which makes clear that ¢, , is not constant. Hence, for linear functions it is especially impor-
tant to note the point at which elasticity is to be computed.
If the functional relationship between y and «x is of the exponential form

y = ax®

then the elasticity is a constant, independent of where it is measured:

e :a—y-f:uhxb’l-i:b.
BE 9x oy axt
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A logarithmic transformation of this equation also provides a very convenient alternative
definition of elasticity. Because

Iny=Ina+b6ln x,
we have
a1l
e,. = b= ny.
»¥ dln x

Hence, elasticities can be calculated through “logarithmic differentiation.” As we shall see,
this is frequently the easiest way to proceed in making such calculations.

(2.14)

QUERY: Are there any functional forms in addition to the exponential that have a constant
elasticity, at least over some range?

Second-order partial derivatives

The partial derivative of a partial derivative is directly analogous to the second derivative of a
function of one variable and is called a second-order partial derivative. This may be written as

d(9f /ox;)
0x;
or more simply as

2f
= f... 2.15
926020 fy (2.13)

For the examples above:

52

b axlfxl =fu= 20
fa=10
fu=10
S = 2c.

2 0%, +bx

2. fiy= ate™tt
_ ax, +bx.
fia= abe™1 7%
_ 2%, +bx.

S = abe™17%

fzz — pRematin,

3. _ 2
fa= 2
f12: 0
f21: 0

—-b
f22: 2
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Young'’'s theorem

These examples illustrate the mathematical result that, under quite general conditions, the
order in which partial differentiation is conducted to evaluate second-order partial derivatives
does not matter. That is,

fi =Fi (2.16)

for any pair of variables x;,x;. This result is sometimes called “Young’s theorem.” For an
intuitive explanation of the theorem, we can return to our mountain-climbing analogy. In
this example, the theorem states that the gain in elevation a hiker experiences depends on
the directions and distances traveled, but not on the order in which these occur. That is, the
gain in altitude is independent of the actual path taken as long as the hiker proceeds from
one set of map coordinates to another. He or she may, for example, go one mile north, then
one mile east or proceed in the opposite order by first going one mile east, then one mile
north. In either case, the gain in elevation is the same since in both cases the hiker is moving
from one specific place to another. In later chapters we will make good use of this result
because it provides a very convenient way of showing some of the predictions that economic
models make about behavior.”

Uses of second-order partials

Second-order partial derivatives will play an important role in many of the economic theories
that are developed throughout this book. Probably the most important examples relate to the
“own” second-order partial, f;;. This function shows how the marginal influence of x; on y
(i.c.,dy/dx;) changes as the value of x; increases. A negative value for f;; is the mathematical
way of indicating the economic idea of diminishing marginal effectiveness. Similarly, the
cross-partial f;; indicates how the marginal effectiveness of x; changes as x; increases. The sign
of this effect could be either positive or negative. Young’s theorem indicates that, in general,
such cross-effects are symmetric. More generally, the second-order partial derivatives of a
function provide information about the curvature of the function. Later in this chapter we
will see how such information plays an important role in determining whether various
second-order conditions for a maximum are satisfied.

MAXIMIZATION OF FUNCTIONS OF SEVERAL VARIABLES

Using partial derivatives, we can now discuss how to find the maximum value for a function of
several variables. To understand the mathematics used in solving this problem, an analogy to
the one-variable case is helpful. In this one-variable case, we can picture an agent varying x by
a small amount, dx, and observing the change in y, dy. This change is given by

dy = f'(x)dx. (2.17)

The identity in Equation 2.17 records the fact that the change in y is equal to the change in
x times the slope of the function. This formula is equivalent to the point-siope formula used
for linear equations in basic algebra. As before, the necessary condition for a maximum is
that dy = 0 for small changes in x around the optimal point. Otherwise, y could be increased
by suitable changes in x. But because dx does not necessarily equal 0 in Equation 2.17,
dy = 0 must imply that at the desired point, f'(x) = 0. This is another way of obtaining the
first-order condition for a maximum that we already derived.

2Young’s theorem implies that the matrix of the second-order partial derivatives of a function is symmetric. This symmetry
offers a number of economic insights. For a brief introduction to the matrix concepts used in economics, see the Extensions
to this chapter.
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Using this analogy, let’s look at the decisions made by an economic agent who must

choose the levels of several variables. Suppose that this agent wishes to find a set of &’s that
will maximize the value of y = f(x,, 4, ..., x,). The agent might consider changing only one
of the «’s, say x;, while holding all the others constant. The change in y (that is, dy) that
would result from this change in x; is given by
dy = f dxl = fidx,.
This says that the change in y is equal to the change in x, times the slope measured in the x;
direction. Using the mountain analogy again, the gain in altitude a climber heading north
would achieve is given by the distance northward traveled times the slope of the mountain
measured in a northward direction.

Total differential

Ifall the «’s are varied by a small amount, the total effect on y will be the sum of effects such as
that shown above. Therefore the total change in y is defined to be

_ O . af af
= fldxl —&-fzdxz t oot f . (2.18)

This expression is called the tozal differential of f and is directly analogous to the expression
for the single-variable case given in Equation 2.17. The equation is intuitively sensible: The
total change in y is the sum of changes brought about by varying each of the x’s.?

First-order condition for a maximum

A necessary condition for a maximum (or a minimum) of the function f(x;, x,, ..., x,) is that
dy = 0 for any combination of small changes in the &’s. The only way this can happen is if;, at
the point being considered,

fi=fh=-=f=0. (2.19)

A point where Equations 2.19 hold is called a critical point. Equations 2.19 are the
necessary conditions for a local maximum. To see this intuitively, note that if one of the
partials (say, f;) were greater (or less) than 0, then y could be increased by increasing (or
decreasing) x;. An economic agent then could find this maximal point by finding the spot
where y does not respond to very small movements in any of the x’s. This is an extremely
important result for economic analysis. It says that any activity (that is, the &’s) should be
pushed to the point where its “marginal” contribution to the objective (that is, y) is 0. To
stop short of that point would fail to maximize y.

3The total differential in Equation 2.18 can be used to derive the chain rule as it applies to functions of several variables.
Suppose that y = f(x;,x,) and that x; = g(z) and x, = k(z). If all of these functions are differentiable, then it is possible to
calculate the effects of a change in z on y. The total differential of y is

dy = frdx, + fo0%,.
Dividing this equation by 4z gives

h

A a)
L

7*f1

Hence, calculating the effect of z on y requires calculating how z affects both of the determinants of y (that is, x; and ;). If

y depends on more than two variables, an analogous result holds. This result acts as a reminder to be rather careful to
include all possible effects when calculating derivatives of functions of several variables.

29
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EXAMPLE 2.3 Finding a Maximum

Suppose that y is a function of x; and x, given by

y=—(x —1)* — (%, —2)>+10 (2.20)
or

y=—x} + 2% — x5 + 4%, + 5.

For example, y might represent an individual’s health (measured on a scale of 0 to 10),
and x; and x, might be daily dosages of two health-enhancing drugs. We wish to find values
for x; and x, that make y as large as possible. Taking the partial derivatives of y with respect
to x; and &, and applying the necessary conditions given by Equations 2.19 yields

9y

S = 2 £2=0,
; ! (2.21)
Y o, +4=0
0%
or
xf =1,
xy = 2.

The function is therefore at a critical point when x; = 1, x, = 2. At that point, y = 10 is the
best health status possible. A bit of experimentation provides convincing evidence that this is
the greatest value y can have. For example, if x;, = x, =0, then y =5, orif ¥, = x, =1,
then y = 9. Values of x; and «x, larger than 1 and 2, respectively, reduce y because the
negative quadratic terms in Equation 2.20 become large. Consequently, the point found by
applying the necessary conditions is in fact a local (and global) maximum.*

QUERY: Suppose y took on a fixed value (say, 5). What would the relationship implied
between &, and &, look like? How about for y = 72 Or y = 10? (These graphs are contour
lines of the function and will be examined in more detail in several later chapters. See also
Problem 2.1.)

Second-order conditions

Again, however, the conditions of Equations 2.19 are not sufficient to ensure a maximum.
This can be illustrated by returning to an already overworked analogy: All hilltops are
(more or less) flat, but not every flat place is a hilltop. A second-order condition similar to
Equation 2.6 is needed to ensure that the point found by applying Equations 2.19 is a local
maximum. Intuitively, for a local maximum, y should be decreasing for any small changes in
the x’s away from the critical point. As in the single-variable case, this necessarily involves
looking at the second-order partial derivatives of the function f. These second-order partials
must obey certain restrictions (analogous to the restriction that was derived in the single-
variable case) if the critical point found by applying Equations 2.19 is to be a local maximum.
Later in this chapter we will look at these restrictions.

*More formally, the point 4, = 1, , = 2 is a global maximum because the function described by Equation 2.20 is concave
(see our discussion later in this chapter).
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IMPLICIT FUNCTIONS

Although mathematical equations are often written with a “dependent” variable (y) as a func-
tion of one or more independent variables (x), this is not the only way to write such a rela-
tionship. As a trivial example, the equation

y=mx+b (2.22)
can also be written as
y—mx—b=0 (2.23)
or, even more generally, as
f(x,y,m,b) =0, (2.24)

where this functional notation indicates a relationship between x and y that also depends on
the slope () and intercept (&) parameters of the function, which do not change. Functions
written in these forms are sometimes called zmplicit functions because the relationships
between the variables and parameters are implicitly present in the equation rather than being
explicitly calculated as, say, y as a function of x and the parameters 7 and &.

Often it is a simple matter to translate from implicit functions to explicit ones. For
example, the implicit function

x+2y—4=0 (2.25)
can easily be “solved” for x as
x=-2y+4 (2.26)
or for y as
—x
=—+2. 2,27
Y= + ( )

Derivatives from implicit functions

In many circumstances it is helpful to compute derivatives directly from implicit functions
without solving for one of the variables directly. For example, the implicit function f(x,y) = 0
has a total differential of 0 = f.dx + f,dy, so

ot (2.28)

dx 5
Hence, the implicit derivative dy/dx can be found as the negative of the ratio of the partial
derivatives of the implicit function, providing f, # 0.
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EXAMPLE 2.4 A Production Possibility Frontier—Again

In Example 1.3 we examined a production possibility frontier for two goods of the form
x% +0.255* = 200 (2.29)
or, written implicitly,

f(x,9) = x* +0.25y> — 200 = 0. (2.30)

Hence,

(continued)
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EXAMPLE 2.4 CONTINUED

fo = 2x,
f, = 0.5y,

and, by Equation 2.28, the opportunity cost trade-oft between x and y is

ﬂ:—_f;:—_ZxZﬂ’ (2.31)
dx  f, 0.5y y
which is precisely the result we obtained earlier, with considerably less work.

QUERY: Why does the trade-off between x and y here depend only on the ratio of x to y
and not on the size of the labor force as reflected by the 200 constant?

Implicit function theorem

It may not always be possible to solve implicit functions of the form g(x,y) = 0 for unique
explicit functions of the form y = f(x). Mathematicians have analyzed the conditions under
which a given implicit function can be solved explicitly with one variable being a function of
other variables and various parameters. Although we will not investigate these conditions
here, they involve requirements on the various partial derivatives of the function that are
sufficient to ensure that there is indeed a unique relationship between the dependent and
independent variables.® In many economic applications, these derivative conditions are
precisely those required to ensure that the second-order conditions for a maximum (or a
minimum) hold. Hence, in these cases, we will assert that the gmplicit function theorem holds
and that it is therefore possible to solve explicitly for trade-ofts among the variables involved.

THE ENVELOPE THEOREM

One major application of the implicit function theorem, which will be used many times in this
book, is called the envelope theorems; it concerns how the optimal value for a particular function
changes when a parameter of the function changes. Because many of the economic problems we
will be studying concern the effects of changing a parameter (for example, the effects that
changing the market price of a commodity will have on an individual’s purchases), this is a type
of calculation we will frequently make. The envelope theorem often provides a nice shortcut.

A specific example

Perhaps the easiest way to understand the envelope theorem is through an example. Suppose
yis a function of a single variable (x) and a parameter (2) given by

Y= —x? + ax. (2.32)

For different values of the parameter a, this function represents a family of inverted parab-
olas. If # is assigned a specific value, Equation 2.32 is a function of x only, and the value of x that
maximizes y can be calculated. For example, if 2 = 1, then x* = % and, for these values of x
and #, y = { (its maximal value). Similarly, if # = 2, then ™ = 1 and y* = 1. Hence, an increase

5For a detailed discussion of the implicit function theorem in various contexts, see Carl P. Simon and Lawrence Blume,
Mathematics for Economists (New York: W. W. Norton, 1994), chap. 15.
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of 1 in the value of the parameter # has increased the maximum value of y by 2. In Table 2.1,
integral values of 2 between 0 and 6 are used to calculate the optimal values for x and the
associated values of the objective, y. Notice that as # increases, the maximal value for y also
increases. This is also illustrated in Figure 2.3, which shows that the relationship between 2 and
y* is quadratic. Now we wish to calculate explicitly how y* changes as the parameter 2 changes.

TABLE 2.1 Optimal Values of y and x for Alternative Values of a in y = —x? + ax

Value of 2 Value of x* Value of y*
0 0 0
1 > i
2 1 1
3 3 z
4 2 4
5 5 %
6 3 9

FIGURE 2.3 lllustration of the Envelope Theorem

The envelope theorem states that the slope of the relationship between y* (the maximum value of y)
and the parameter 2 can be found by calculating the slope of the auxiliary relationship found by
substituting the respective optimal values for x into the objective function and calculating dy/da.
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A direct, time-consuming approach

The envelope theorem states that there are two equivalent ways we can make this calculation.
First, we can calculate the slope of the function in Figure 2.3 directly. To do so, we must solve
Equation 2.32 for the optimal value of x for any value of a:

dy

—=-2 = 0;
I x+a ;
hence,
*_ 2
x X

Substituting this value of 4™ in Equation 2.32 gives
Y= () +a(x")

a2 a

=3) +43)

a? At

i 2T
and this is precisely the relationship shown in Figure 2.3. From the previous equation, it is
easy to see that
dy* 2a a
-~ =" =_ 233
dn 4 2 ( )
and, for example, at @ = 2, dy* /da = 1. That s, near 2 = 2 the marginal impact of increasing
a is to increase y* by the same amount. Near 2 = 6, any small increase in 2 will increase y*
by three times this change. Table 2.1 illustrates this result.

The envelope shortcut

Arriving at this conclusion was a bit complicated. We had to find the optimal value of x for
each value of # and then substitute this value for 4™ into the equation for y. In more general
cases this may be quite burdensome since it requires repeatedly maximizing the objective
function. The envelope theorem, providing an alternative approach, states that for small
changes in 2, dy* /da can be computed by holding x constant at its optimal value and simply
calculating 9y/da from the objective function directly.

Proceeding in this way gives

LA (2.34)

and at ™ we have

dy x_ a4
—. 2.
X (2.35)

This is precisely the result obtained earlier. The reason that the two approaches yield identical
results is illustrated in Figure 2.3. The tangents shown in the figure report values of y for a fixed
x™*. The tangents’ slopes are dy/da. Clearly, at y* this slope gives the value we seek.

This result is quite general, and we will use it at several places in this book to simplify
our analysis. To summarize, the envelope theorem states that the change in the optimal
value of a function with respect to a parameter of that function can be found by partially
differentiating the objective function while holding x constant at its optimal value. That is,
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dy*  dy
where the notation provides a reminder that dy/d2 must be computed at that value of x that
is optimal for the specific value of the parameter 2 being examined.

Many-variable case

An analogous envelope theorem holds for the case where ¥ is a function of several variables.
Suppose that y depends ona set of &’s (%1, ..., ,,) and on a particular parameter of interest, say, a:

y:f(xla"'axn>”’)' (2.37)

Finding an optimal value for y would consist of solving # first-order equations of the form

W0 (i=1,..,m), (2.38)

0x;

and a solution to this process would yield optimal values for these &’s (x7,%3,...,x}) that
would implicitly depend on the parameter 2. Assuming the second-order conditions are
met, the implicit function theorem would apply in this case and ensure that we could solve
cach x} as a function of the parameter a:

xy = %1 (a),
x5 = %3 (a), 239)
X = xk(a).

Substituting these functions into our original objective (Equation 2.37) yields an expression
in which the optimal value of y (say, y*) depends on the parameter # both directly and
indirectly through the effect of # on the &™’s:

v =flxy(a),65 (), ..., (a), a].
Totally differentiating this expression with respect to a yields
af _of d  Of dv o of d,

da  9x, dn 0x, da ox, do

+ i (2.40)
da

But, because of the first-order conditions all of these terms except the last are equal to 0 if
the x’s are at their optimal values. Hence, again we have the envelope result:

dy*  of

=~z 241

da  oa’ (2.41)

where this derivative is to be evaluated at the optimal values for the &’s.

EXAMPLE 2.5 The Envelope Theorem: Health Status Revisited

Earlier, in Example 2.3, we examined the maximum values for the health status function

y=—(x —1)* — (2, —2)*+10 (2.42)
and found that
s =1, (2.43)
x5 =2, ’

(continued)
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EXAMPLE 2.5 CONTINUED

and
y* =10.

Suppose now we use the arbitrary parameter 2 instead of the constant 10 in Equation 2.42.
Here 2 might represent a measure of the best possible health for a person, but this value
would obviously vary from person to person. Hence,

Y= f(3,%,8) = ~(x, = 1)” — (%, = 2)* + a. (2.44)

In this case the optimal values for x; and x, do not depend on # (they are always x} = 1,
x5 = 2), so at those optimal values we have

y* =a (2.45)
and .

dy

—~ =1 2.4

in (2.46)

People with “naturally better health” will have concomitantly higher values for y*, providing
they choose x; and x, optimally. But this is precisely what the envelope theorem indicates,
because

dy* of

——=—=1 2.47

da  da ( )
from Equation 2.44. Increasing the parameter # simply increases the optimal value for y* by
an identical amount (again, assuming the dosages of x; and x, are correctly chosen).

QUERY: Suppose we focused instead on the optimal dosage for &, in Equation 2.42—that is,

suppose we used a general parameter, say &, instead of 1. Explain in words and using
mathematics why 9y* /& would necessarily be 0 in this case.

CONSTRAINED MAXIMIZATION

So far we have focused our attention on finding the maximum value of a function without
restricting the choices of the «x’s available. In most economic problems, however, not all
values for the x’s are feasible. In many situations, for example, it is required that all the x’s be
positive. This would be true for the problem faced by the manager choosing output to
maximize profits; a negative output would have no meaning. In other instances the &’s may
be constrained by economic considerations. For example, in choosing the items to consume,
an individual is not able to choose any quantities desired. Rather, choices are constrained by
the amount of purchasing power available; that is, by this person’s budget constraint. Such
constraints may lower the maximum value for the function being maximized. Because we are
not able to choose freely among all the &’s, y may not be as large as it could be. The
constraints would be “nonbinding” if we could obtain the same level of y with or without
imposing the constraint.

Lagrangian multiplier method

One method for solving constrained maximization problems is the Lagrangian multiplier
method, which involves a clever mathematical trick that also turns out to have a useful
economic interpretation. The rationale of this method is quite simple, although no rigorous
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presentation will be attempted here.® In a prior section, the necessary conditions for a local
maximum were discussed. We showed that at the optimal point all the partial derivatives of f°
must be 0. There are therefore # equations (f; = 0 for 7 = 1, ..., #) in » unknowns (the &’s).
Generally, these equations can be solved for the optimal x’s. When the x’s are constrained,
however, there is at least one additional equation (the constraint) but no additional variables.
The set of equations therefore is overdetermined. The Lagrangian technique introduces an
additional variable (the Lagrangian multiplier), which not only helps to solve the problem at
hand (because there are now # + 1 equations in 7 + 1 unknowns), but also has an interpre-
tation that is useful in a variety of economic circumstances.

The formal problem
More specifically, suppose that we wish to find the values of x;, x,, ..., x,, that maximize

y:f(xl’x27"'>xn)) (2-48)

subject to a constraint that permits only certain values of the x’s to be used. A general way
of writing that constraint is
IJ(%,%,,...,%5,) =0, (2.49)

where the function” g represents the relationship that must hold among all the &’s.

First-order conditions
The Lagrangian multiplier method starts with setting up the expression
L= flx,%,....%5,) + \g(x,%,,...,%,), (2.50)

where A is an additional variable called the Lagrangian multiplier. Later we will interpret this
new variable. First, however, notice that when the constraint holds, & and f have the same
value [because g(x;,%,,...,x,) = 0]. Consequently, if we restrict our attention only to
values of the «’s that satisfy the constraint, finding the constrained maximum value of f is
cquivalent to finding a critical value of &. Let us proceed then to do so, treating \ also as a
variable (in addition to the &’s). From Equation 2.50, the conditions for a critical point are:

% =h+tM =0,
% =hH+Np =0,
(2.51)
% =ft+tM\, =0,
% =g(%,%,,...,x5,) =0.

Equations 2.51 are then the conditions for a critical point for the function &. Notice that
there are # + 1 equations (one for each x and a final one for \) in # + 1 unknowns. The
equations can generally be solved for x,x,,...,x,, and N. Such a solution will have two

SFor a detailed presentation, see A. K. Dixit, Optimization in Economic Theory, 2nd ed. (Oxford: Oxford University Press,
1990), chap. 2.

7As we pointed out earlier, any function of x;,%,,...,, can be written in this implicit way. For example, the constraint
%, + x, = 10 could be written 10 — x; — x, = 0. In later chapters, we will usually follow this procedure in dealing with
constraints. Often the constraints we examine will be linear.
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properties: (1) the x’s will obey the constraint because the last equation in 2.51 imposes that
condition; and (2) among all those values of x’s that satisfy the constraint, those that also
solve Equations 2.51 will make & (and hence £) as large as possible (assuming second-order
conditions are met). The Lagrangian multiplier method therefore provides a way to find a
solution to the constrained maximization problem we posed at the outset.®

The solution to Equations 2.51 will usually differ from that in the unconstrained case (see
Equations 2.19). Rather than proceeding to the point where the marginal contribution of
each x is 0, Equations 2.51 require us to stop short because of the constraint. Only if the
constraint were ineffective (in which case, as we show below, N would be 0) would the con-
strained and unconstrained equations (and their respective solutions) agree. These revised
marginal conditions have economic interpretations in many different situations.

Interpretation of the Lagrangian multiplier

So far we have used the Lagrangian multiplier (X) only as a mathematical “trick” to arrive at
the solution we wanted. In fact, that variable also has an important economic interpretation,
which will be central to our analysis at many points in this book. To develop this interpreta-
tion, rewrite the first # equations of 2.51 as

A _h s (2.52)
N 5 ~In
In other words, at the maximum point, the ratio of f; to g; is the same for every x,. The
numerators in Equations 2.52 are the marginal contributions of each x to the function f.
They show the marginal benefit that one more unit of x; will have for the function that is
being maximized (that is, for f).

A complete interpretation of the denominators in Equations 2.52 is probably best left until
we encounter these ratios in actual economic applications. There we will see that these usually
have a “marginal cost” interpretation. That is, they reflect the added burden on the constraint
of using slightly more ;. As a simple illustration, suppose the constraint required that total
spending on x; and x, be given by a fixed dollar amount, F. Hence, the constraint would
be p,x, + p,x, = F (where p; is the per unit cost of x; ). Using our present terminology, this
constraint would be written in implicit form as

I(xy, %) = F — pyo — px, = 0. (2.53)
In this situation, then,
5i=» (254)

and the derivative —g; does indeed reflect the per unit, marginal cost of using x;. Practically all
of the optimization problems we will encounter in later chapters have a similar interpretation
for the denominators in Equations 2.52.

Lagrangian multiplier as a benefit-cost ratio

Now we can give Equations 2.52 an intuitive interpretation. They indicate that, at the
optimal choices for the &’s, the ratio of the marginal benefit of increasing x; to the marginal
cost of increasing &; should be the same for every x. To see that this is an obvious condition

8Strictly speaking, these are the necessary conditions for an interior local maximum. In some economic problems, it is
necessary to amend these conditions (in fairly obvious ways) to take account of the possibility that some of the x’s may be
on the boundary of the region of permissible x’s. For example, if all of the x’s are required to be nonnegative, it may be that
the conditions of Equations 2.51 will not hold exactly, because these may require negative x’s. We look at this situation
later in this chapter.



Chapter 2 Mathematics for Microeconomics

for a maximum, suppose that it were not true: Suppose that the “benefit-cost ratio” were
higher for x; than for x,. In this case, slightly more x, should be used in order to achieve a
maximum. Consider using more x, but giving up just enough x, to keep g (the constraint)
constant. Hence, the marginal cost of the additional x; used would equal the cost saved by
using less x,. But because the benefit-cost ratio (the amount of benefit per unit of cost) is
greater for &, than for x,, the additional benefits from using more x; would exceed the loss in
benefits from using less x,. The use of more », and appropriately less x, would then increase y
because x; provides more “bang for your buck.” Only if the marginal benefit-marginal cost
ratios are equal for all the x’s will there be a local maximum, one in which no small changes in
the x’s can increase the objective. Concrete applications of this basic principle are developed
in many places in this book. The result is fundamental for the microeconomic theory of
optimizing behavior.

The Lagrangian multiplier (\) can also be interpreted in light of this discussion. \ is the
common benefit-cost ratio for all the &’s. That is,

N = marginal benefit of x;

p (2.55)
marginal cost of x;

for every x;. If the constraint were relaxed slightly, it would not matter exactly which wx is
changed (indeed, all the x’s could be altered), because, at the margin, each promises the
same ratio of benefits to costs. The Lagrangian multiplier then provides a measure of how
such an overall relaxation of the constraint would affect the value of y. In essence, N assigns a
“shadow price” to the constraint. A high \ indicates that y could be increased substantially
by relaxing the constraint, because each x has a high benefit-cost ratio. A low value of \, on
the other hand, indicates that there is not much to be gained by relaxing the constraint. If
the constraint is not binding at all, N will have a value of 0, thereby indicating that the
constraint is not restricting the value of y. In such a case, finding the maximum value of y
subject to the constraint would be identical to finding an unconstrained maximum. The
shadow price of the constraint is 0. This interpretation of N can also be shown using the
envelope theorem as described later in this chapter.”

Duality

This discussion shows that there is a clear relationship between the problem of maximizing a
function subject to constraints and the problem of assigning values to constraints. This reflects
what is called the mathematical principle of “duality”: Any constrained maximization problem
has an associated dual problem in constrained minimization that focuses attention on the
constraints in the original (primal) problem. For example, to jump a bit ahead of our story,
economists assume that individuals maximize their utility, subject to a budget constraint. This
is the consumer’s primal problem. The dual problem for the consumer is to minimize the
expenditure needed to achieve a given level of utility. Or, a firm’s primal problem may be to
minimize the total cost of inputs used to produce a given level of output, whereas the dual
problem is to maximize output for a given cost of inputs purchased. Many similar examples will
be developed in later chapters. Each illustrates that there are always two ways to look at any
constrained optimization problem. Sometimes taking a frontal attack by analyzing the primal
problem can lead to greater insights. In other instances, the “back door” approach of examining
the dual problem may be more instructive. Whichever route is taken, the results will generally,
though not always, be identical, so the choice made will mainly be a matter of convenience.

*The discussion in the text concerns problems involving a single constraint. In general, one can handle # constraints
(m < n) by simply introducing m new variables (Lagrangian multipliers) and proceeding in an analogous way to that
discussed above.

39
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EXAMPLE 2.6 Constrained Maximization: Health Status Yet Again

Let’s return once more to our (perhaps tedious) health maximization problem. As before, the
individual’s goal is to maximize

y=—x + 2% — x% + 4%, + 5,

but now assume that choices of x; and x, are constrained by the fact that he or she can only
tolerate one drug dose per day. That is,

x +x,=1 (2.56)
or
1-% —x,=0.

Notice that the original optimal point (x; = 1,x, = 2) is no longer attainable because of the
constraint on possible dosages: other values must be found. To do so, we first set up the
Lagrangian expression:

P=—x2 420 — x5 +4x, -5 N1 — % —x,). (2.57)

Differentiation of & with respect to x;, &,, and \ yields the following necessary condition for
a constrained maximum:

0L

— = 2x%+2-\=0,

dx;

0L

—— = 2x,+4-\=0, (2.58)
0x,

0L

a =l—x1—x2=0.

These equations must now be solved for the optimal values of %, &,, and \. Using the first
and second equations gives

2%, +2=N=2x,+4

or
% =x — L (2.59)
Substitution of this value for x; into the constraint yields the solution:
x, =1,
x, = 0. (2.60)

In words, if this person can tolerate only one dose of drugs, he or she should opt for taking
only the second drug. By using either of the first two equations, it is easy to complete our
solution by showing that

A=2. (2.61)

This, then, is the solution to the constrained maximum problem. If x; = 0, », = 1, then ¥
takes on the value 8. Constraining the values of x; and x, to sum to 1 has reduced the
maximum value of health status, y, from 10 to 8.

QUERY: Suppose this individual could tolerate two doses per day. Would you expect y to
increase? Would increases in tolerance beyond three doses per day have any effect on y?
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EXAMPLE 2.7 Optimal Fences and Constrained Maximization

Suppose a farmer had a certain length of fence, P, and wished to enclose the largest possible
rectangular area. What shape area should the farmer choose? This is clearly a problem in
constrained maximization. To solve it, let x be the length of one side of the rectangle and y
be the length of the other side. The problem then is to choose x and y so as to maximize the area
of the field (given by A = x-y), subject to the constraint that the perimeter is fixed at
P =2x+2y.

Setting up the Lagrangian expression gives

L=x-y+ NP —2x—2y), (2.62)
where A is an unknown Lagrangian multiplier. The first-order conditions for a maximum are
oL
— =y—-2\=0
o Y 5
oL
— =x—-2\=0, (2.63)
dy
0L
X x—2y=0

The three equations in 2.63 must be solved simultaneously for x, y, and . The first two
equations say that y/2 = x/2 = \, showing that x must be equal to y (the field should be
square). They also imply that x and y should be chosen so that the ratio of marginal benefits to
marginal cost is the same for both variables. The benefit (in terms of area) of one more unit of x
is given by ¥ (area is increased by 1 - y), and the marginal cost (in terms of perimeter) is 2 (the
available perimeter is reduced by 2 for each unit that the length of side x is increased). The
maximum conditions state that this ratio should be equal for each of the variables.
Since we have shown that x = y, we can use the constraint to show that

and, because y = 2\,

(2.65)

Interpretation of the Lagrangian Multiplier. Ifthe farmer were interested in knowing how
much more field could be fenced by adding an extra yard of fence, the Lagrangian multiplier
suggests that he or she could find out by dividing the present perimeter by 8. Some specific
numbers might make this clear. Suppose that the field currently has a perimeter of 400 yards. If
the farmer has planned “optimally,” the field will be a square with 100 yards (= P/4) on aside.
The enclosed area will be 10,000 square yards. Suppose now that the perimeter (that is, the
available fence) were enlarged by one yard. Equation 2.65 would then “predict” that the total
area would be increased by approximately 50 (= P/8) square yards. That this is indeed the
case can be shown as follows: Because the perimeter is now 401 yards, each side of the square
will be 401 /4 yards. The total area of the field is therefore (401/4), which, according to the
author’s calculator, works out to be 10,050.06 square yards. Hence, the “prediction” of'a 50-
square-yard increase that is provided by the Lagrangian multiplier proves to be remarkably
close. As in all constrained maximization problems, here the Lagrangian multiplier provides
useful information about the implicit value of the constraint.

(continued)
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EXAMPLE 2.7 CONTINUED

Duality. The dual of this constrained maximization problem is that for a given area of a
rectangular field, the farmer wishes to minimize the fence required to surround it. Mathe-
matically, the problem is to minimize

P =2x+2y, (2.66)
subject to the constraint
A=x-y. (2.67)
Setting up the Lagrangian expression
PP =2x+ 2y +\P(A—x-y) (2.68)
(where the D denotes the dual concept) yields the following first-order conditions for a
minimum:
9P
——=2-\P.y=0,
0%
D
o, W, (2.69)
ay
aseP
a)\iD = A — X - y = 0
Solving these equations as before yields the result
x=y=VA (2.70)

Again, the field should be square if the length of fence is to be minimized. The value of the
Lagrangian multiplier in this problem is
p 2 2 2
A Yy x VA (2.71)

As before, this Lagrangian multiplier indicates the relationship between the objective
(minimizing fence) and the constraint (needing to surround the field). If the field were 10,000
square yards, as we saw before, 400 yards of fence would be needed. Increasing the field by one
square yard would require about .02 more yards of fence (= 2/+/A = 2/100). The reader may
wish to fire up his or her calculator to show this is indeed the case—a fence 100.005 yards on
cach side will exactly enclose 10,001 square yards. Here, as in most duality problems, the value
of the Lagrangian in the dual is the reciprocal of the value for the Lagrangian in the primal
problem. Both provide the same information, although in a somewhat different form.

QUERY: An implicit constraint here is that the farmer’s field be rectangular. If this constraint
were not imposed, what shape field would enclose maximal area? How would you prove that?

ENVELOPE THEOREM IN CONSTRAINED
MAXIMIZATION PROBLEMS

The envelope theorem, which we discussed previously in connection with unconstrained maxi-
mization problems, also has important applications in constrained maximization problems.
Here we will provide only a brief presentation of the theorem. In later chapters we will look at a
number of applications.
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Suppose we seek the maximum value of
y=f(x,...,5,5a), (2.72)
subject to the constraint
I(%y, .5 3,50) = 0, (2.73)

where we have made explicit the dependence of the functions f and g4 on some parameter 2.
As we have shown, one way to solve this problem is to set up the Lagrangian expression

L=Ffl2,....%,;8) + \g(%,...,%,;a) (2.74)

and solve the first-order conditions (see Equations 2.51) for the optimal, constrained values
%y, ..., 4. Alternatively, it can be shown that

dy* 0%

o oa
Thatis, the change in the maximal value of y that results when the parameter # changes (and all
of the «’s are recalculated to new optimal values) can be found by partially differentiating
the Lagrangian expression (Equation 2.74) and evaluating the resultant partial derivative
at the optimal point.'® Hence, the Lagrangian expression plays the same role in applying the
envelope theorem to constrained problems as does the objective function alone in un-
constrained problems. As a simple exercise, the reader may wish to show that this result holds
for the problem of fencing a rectangular field described in Example 2.7.!

(%7, ...,xz; a). (2.75)

INEQUALITY CONSTRAINTS

In some economic problems the constraints need not hold exactly. For example, an indivi-
dual’s budget constraint requires that he or she spend no more than a certain amount per
period, but it is at least possible to spend less than this amount. Inequality constraints also
arise in the values permitted for some variables in economic problems. Usually, for example,
economiic variables must be nonnegative (though they can take on the value of zero). In this
section we will show how the Lagrangian technique can be adapted to such circumstances.
Although we will encounter only a few problems later in the text that require this mathemat-
ics, development here will illustrate a few general principles that are quite consistent with
economic intuition.

A two-variable example

In order to avoid much cumbersome notation, we will explore inequality constraints only for
the simple case involving two choice variables. The results derived are readily generalized.
Suppose that we seck to maximize y = f(x;, &,) subject to three inequality constraints:

1% or a more complete discussion of the envelope theorem in constrained maximization problems, see Eugene Silberberg
and Wing Suen, The Structure of Ecomomics: A Mathematical Analysis, 3rd ed. (Boston: Irwin/McGraw-Hill, 2001),
pp. 159-61.

"For the primal problem, the perimeter P is the parameter of principal interest. By solving for the optimal values of x and y
and substituting into the expression for the area (A) of the field, it is easy to show that 4A/dP = P/8. Differentiation of
the Lagrangian expression (Equation 2.62) yields d£/dP =\ and, at the optimal values of x and y, dA/dP =
0L/9dP = N = P/8. The envelope theorem in this case then offers further proof that the Lagrangian multiplier can be used
to assign an implicit value to the constraint.
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1. g(xy,%,) > 0;
2. %, >0; and (2.76)
3. x, > 0.
Hence, we are allowing for the possibility that the constraint we introduced before need not

hold exactly (a person need not spend all of his or her income) and for the fact that both of
the x’s must be nonnegative (as in most economic problems).

Slack variables

One way to solve this optimization problem is to introduce three new variables (2, &, and ¢)
that convert the inequality constraints in Equation 2.76 into equalities. To ensure that the
inequalities continue to hold, we will square these new variables, ensuring that the resulting
values are positive. Using this procedure, the inequality constraints become

L. g(x,%,) — a® = 0;

2. % —b*=0; and (2.77)

3. %, —c*=0.
Any solution that obeys these three equality constraints will also obey the inequality

constraints. It will also turn out that the optimal values for #, &, and ¢ will provide several
insights into the nature of the solutions to a problem of this type.

Solution by the method of Lagrange

By converting the original problem involving inequalities into one involving equalities, we are
now in a position to use Lagrangian methods to solve it. Because there are three constraints, we
must introduce three Lagrangian multipliers: Ay, X5, and A 3. The full Lagrangian expression is

L = f(x1, %) + M52, %) — 2] + 0, (x = 82) +05(x, — %), (2.78)

We wish to find the values of x;, x,, @, &, ¢, A1, N3, and 3 that constitute a critical point for
this expression. This will necessitate eight first-order conditions:

4

a:fl—F)\lgl +)\2:0,
oL

oL

— =—-2a\ =0,

on

oL

A =—-2b\, =0,

o (2.79)
— =—2e\; =0,

dc

0L

m = g(x1,%,) — a* =0,
4

— =X — b = 0,

N,

4

—=x,—c*=0,

N3

In many ways these conditions resemble those we derived earlier for the case ofa single equality
constraint (see Equation 2.51). For example, the final three conditions merely repeat the three
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revised constraints. This ensures that any solution will obey these conditions. The first two
equations also resemble the optimal conditions developed earlier. If N, and A3 were 0, the
conditions would in fact be identical. But the presence of the additional Lagrangian multipliers
in the expressions shows that the customary optimality conditions may not hold exactly here.

Complementary slackness

The three equations involving the variables #, &, and ¢ provide the most important insights
into the nature of solutions to problems involving inequality constraints. For example, the
third line in Equation 2.79 implies that, in the optimal solution, either \; or 2 must be 0.'* In
the second case (# = 0), the constraint #(x;, x,) = 0 holds exactly and the calculated value of
A1 indicates its relative importance to the objective function, f. On the other hand, if 2 # 0,
then N\, = 0 and this shows that the availability of some slackness in the constraint implies that
its value to the objective is 0. In the consumer context, this means that if a person does not
spend all his or her income, even more income would do nothing to raise his or her well-being.

Similar complementary slackness relationships also hold for the choice variables x; and x;.
For example, the fourth line in Equation 2.79 requires that the optimal solution have either &
or A, be 0. If N, = 0 then the optimal solution has x, > 0, and this choice variable meets the
precise benefit-cost test that f; + A g; = 0. Alternatively, solutions where & = 0 have x; = 0,
and also require that A, > 0. So, such solutions do not involve any use of x; because that
variable does not meet the benefit-cost test as shown by the first line of Equation 2.79, which
implies that f; +\,g; < 0. An identical result holds for the choice variable ;.

These results, which are sometimes called Kubn-Tucker conditions after their discoverers,
show that the solutions to optimization problems involving inequality constraints will differ
from similar problems involving equality constraints in rather simple ways. Hence, we cannot
go far wrong by working primarily with constraints involving equalities and assuming that we
can rely on intuition to state what would happen if the problems actually involved inequal-
ities. That is the general approach we will take in this book.'?

SECOND-ORDER CONDITIONS

So far our discussion of optimization has focused primarily on necessary (first-order) condi-
tions for finding a maximum. That is indeed the practice we will follow throughout much of
this book because, as we shall see, most economic problems involve functions for which the
second-order conditions for a maximum are also satisfied. In this section we give a brief
analysis of the connection between second-order conditions for a maximum and the related
curvature conditions that functions must have to ensure that these hold. The economic
explanations for these curvature conditions will be discussed throughout the text.

Functions of one variable

First consider the case in which the objective, y, is a function of only a single variable, x.
That is,

y=f(x). (2.80)

12We will not examine the degenerate case where both of these variables are 0.

3The situation can become much more complex when calculus cannot be relied upon to give a solution, perhaps because
some of the functions in a problem are not differentiable. For a discussion, see Avinask K. Dixit, Optimization in Economic
Theory, 2nd ed. (Oxford: Oxford University Press, 1990).
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A necessary condition for this function to attain its maximum value at some point is that
4y _
o= %)

at that point. To ensure that the point is indeed a maximum, we must have y decreasing for
movements away from it. We already know (by Equation 2.81) that for small changes in «,
the value of y does not change; what we need to check is whether y is increasing before that
“plateau” is reached and declining thereafter. We have already derived an expression for the
change in y(dy), which is given by the total differential

dy = f'(x)dx. (2.82)

What we now require is that dy be decreasing for small increases in the value of x. The
differential of Equation 2.82 is given by

d(dy) = d’y = W cdx = f"(x)dx - dx = " (x)dx*. (2.83)
But
A’y <0
implies that
f(x)dx* < 0, (2.84)
and since dx?> must be positive (because anything squared is positive), we have
f'(x) <0 (2.85)

as the required second-order condition. In words, this condition requires that the function f
have a concave shape at the critical point (contrast Figures 2.1 and 2.2). Similar curvature
conditions will be encountered throughout this section.

EXAMPLE 2.8 Profit Maximization Again

In Example 2.1 we considered the problem of finding the maximum of the function

m = 1,000 — 54°. (2.86)
The first-order condition for a maximum requires
dm
1 —10g = 2.87
g ,000—-104=0 (2.87)
or
q" =100. (2.88)
The second derivative of the function is given by
A’
— =1 2.89
G = 10<0, (2.89)

and hence the point 4% = 100 obeys the sufficient conditions for a local maximum.

QUERY: Here the second derivative is negative not only at the optimal point; it is always
negative. What does that imply about the optimal point? How should the fact that the second
derivative is a constant be interpreted?
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Functions of two variables
As a second case, we consider y as a function of two independent variables:
¥y =f(%,%,). (2.90)

A necessary condition for such a function to attain its maximum value is that its partial
derivatives, in both the x; and the x, directions, be 0. That is,

dy .

ax1 _fl =0 (2.91)
P .
Y _g=o0.

00X,

A point that satisfies these conditions will be a “flat” spot on the function (a point where
dy = 0) and therefore will be a candidate for a maximum. To ensure that the point is a local
maximum, y must diminish for movements in any direction away from the critical point: In
pictorial terms there is only one way to leave a true mountaintop, and that is to go down.

An intuitive argument

Before describing the mathematical properties required of such a point, an intuitive approach
may be helpful. If we consider only movements in the x, direction, the required condition is
clear: The slope in the x; direction (that is, the partial derivative f; ) must be diminishing at the
critical point. This is a direct application of our discussion of the single-variable case. It shows
that, for a maximum, the second partial derivative in the x, direction must be negative. An
identical argument holds for movements only in the x, direction. Hence, both own second
partial derivatives ( fj;and f;,) must be negative for a local maximum. In our mountain
analogy, if attention is confined only to north-south or east-west movements, the slope of
the mountain must be diminishing as we cross its summit—the slope must change from
positive to negative.

The particular complexity that arises in the two-variable case involves movements
through the optimal point that are not solely in the x; or x, directions (say, movements
from northeast to southwest). In such cases, the second-order partial derivatives do not
provide complete information about how the slope is changing near the critical point.
Conditions must also be placed on the cross-partial derivative ( f;, = f;,) to ensure that dy
is decreasing for movements through the critical point in any direction. As we shall see, those
conditions amount to requiring that the own second-order partial derivatives be sufficiently
negative so as to counterbalance any possible “perverse” cross-partial derivatives that may
exist. Intuitively, if the mountain falls away steeply enough in the north-south and east-west
directions, relatively minor failures to do so in other directions can be compensated for.

A formal analysis

We now proceed to make these points more formally. What we wish to discover are the
conditions that must be placed on the second partial derivatives of the function f to ensure
that 42y is negative for movements in any direction through the critical point. Recall first that
the total differential of the function is given by

dy = fidx, + fdx,. (2.92)
The differential of that function is given by
A%y = (fyy oy + fraoley) ey + ( fyy ey + frp ooyl (2.93)

or

A’y = f,dx} + fi,d,dxy + fo dsy dy + f, . (2.94)
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Because, by Young’s theorem, f;, = f3,, we can arrange terms to get
A’y = fi,dx] + 2f;, dx, dx, + fi, x5 (2.95)

For Equation 2.95 to be unambiguously negative for any change in the x’s (that is, for any
choices of dx; and dx, ), it is obviously necessary that £}, and f;, be negative. If, for example,
dx, = 0, then

A’y = f,, dx? (2.96)
and 4%y < 0 implies
S <0. (2.97)

An identical argument can be made for £, by setting dx;, = 0. If neither dx; nor dx, is 0, we
then must consider the cross partial, f],, in deciding whether or not 4%y is unambiguously
negative. Relatively simple algebra can be used to show that the required condition is'*

firhs —fi, > 0. (2.98)

Concave functions

Intuitively, what Equation 2.98 requires is that the own second partial derivatives
(fijand f5,) be sufficiently negative so that their product (which is positive) will outweigh
any possible perverse effects from the cross-partial derivatives (f;, = f5;). Functions that
obey such a condition are called concave functions. In three dimensions, such functions
resemble inverted teacups (for an illustration, see Example 2.10). This image makes it clear
that a flat spot on such a function is indeed a true maximum because the function always
slopes downward from such a spot. More generally, concave functions have the property that
they always lie below any plane that is tangent to them—the plane defined by the maximum
value of the function is simply a special case of this property.

EXAMPLE 2.9 Second-Order Conditions: Health Status for the Last Time

In Example 2.3 we considered the health status function
y=f(x,%) = —x7 + 2%, — &5 + 4x, + 5. (2.99)

The first-order conditions for a maximum are
A= 2x+2=0,

(2.100)
Hh=-"2x+4=0
or
xf =1,
* (2.101)
xy = 2.

*The proof proceeds by adding and subtracting the term (f;, dx2)2 /f11 to Equation 2.95 and factoring. But this approach
is only applicable to this special case. A more easily generalized approach that uses matrix algebra recognizes that Equation
2.95 is a “Quadratic Form” in dx; and dx,, and that Equations 2.97 and 2.98 amount to requiring that the Hessian matrix

e

be “negative definite.” In particular, Equation 2.98 requires that the determinant of this Hessian be positive. For a
discussion, see the Extensions to this chapter.
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The second-order partial derivatives for Equation 2.99 are

fll = -2,
fn = -2, (2.102)
f,= 0.

These derivatives clearly obey Equations 2.97 and 2.98, so both necessary and sufficient
conditions for a local maximum are satisfied."®

QUERY: Describe the concave shape of the health status function and indicate why it has
only a single global maximum value.

Constrained maximization

As another illustration of second-order conditions, consider the problem of choosing x; and
X, to maximize

y=f(%,%,), (2.103)

subject to the linear constraint
c—byx, —byx, =0 (2.104)

(where ¢, by, b, are constant parameters in the problem). This problem is of a type that will
be frequently encountered in this book and is a special case of the constrained maximum
problems that we examined earlier. There we showed that the first-order conditions for a
maximum may be derived by setting up the Lagrangian expression

L =f(x,%) +Nc—bx — byx,). (2.105)
Partial differentiation with respect to x;, x,, and \ yields the familiar results:
fi =M =0,
£, —Nb, =0, (2.106)

c—byx; — byx, = 0.

These equations can in general be solved for the optimal values of x;, x,, and X. To ensure
that the point derived in that way is a local maximum, we must again examine movements
away from the critical points by using the “second” total differential:

A%y = fi,dx7 + 2f 5 d%, dxy + foydx3. (2.107)

In this case, however, not all possible small changes in the x’s are permissible. Only those
values of x; and x, that continue to satisfy the constraint can be considered valid alternatives
to the critical point. To examine such changes, we must calculate the total differential of the
constraint:

—bydx, — bydx, =0 (2.108)
or
bl
dxy = — L i, . (2.109)
b2

®Notice that Equations 2.102 obey the sufficient conditions not only at the critical point but also for all possible choices of
x; and «x,. That is, the function is concave. In more complex examples this need not be the case: The second-order
conditions need be satisfied only at the critical point for a local maximum to occur.
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This equation shows the relative changes in x; and x, that are allowable in considering
movements from the critical point. To proceed further on this problem, we need to use the
first-order conditions. The first two of these imply

A_h 2.110)
Lo b
and combining this result with Equation 2.109 yields
dxzz—ﬁplxl. (2.111)
f

We now substitute this expression for dx, in Equation 2.107 to demonstrate the conditions
that must hold for 4%y to be negative:

2
A’y = fidx] + 25, (_ i”'lxl) + fo2 <_ ﬁdxl)

L) 5
h f
= firdn} = 2fip "t + foy it (2.112)
f 3
Combining terms and putting each over a common denominator gives
2 2 N
Ay = (fifs — 2 hhs +f22f1)f—2. (2.113)
2
Consequently, for 4%y < 0, it must be the case that
fuf3 =2 il + o f1 <0. (2.114)

Quasi-concave functions

Although Equation 2.114 appears to be little more than an inordinately complex mass of
mathematical symbols, in fact the condition is an important one. It characterizes a set of
functions termed guasi-concave functions. These functions have the property that the set of all
points for which such a function takes on a value greater than any specific constant is a convex
set (that is, any two points in the set can be joined by a line contained completely within the
set). Many economic models are characterized by such functions and, as we will see in
considerable detail in Chapter 3, in these cases the condition for quasi-concavity has a
relatively simple economic interpretation. Problems 2.9 and 2.10 examine two specific
quasi-concave functions that we will frequently encounter in this book. Example 2.10
shows the relationship between concave and quasi-concave functions.

EXAMPLE 2.10 Concave and Quasi-Concave Functions

The differences between concave and quasi-concave functions can be illustrated with the
function'®

y=f(x, %) = (% 'xz)ka (2.115)

where the x’s take on only positive values, and the parameter % can take on a variety of
positive values.

'“This function is a special case of the Cobb-Douglas function. See also Problem 2.10 and the Extensions to this chapter
for more details on this function.
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No matter what value % takes, this function is quasi-concave. One way to show this is
to look at the “level curves” of the function by setting y equal to a specific value, say ¢. In
this case

y=c=(x%,)" or xx,=c/F="(. (2.116)

But this is just the equation of a standard rectangular hyperbola. Clearly the set of points for
which y takes on values larger than ¢ is convex because it is bounded by this hyperbola.

A more mathematical way to show quasi-concavity would apply Equation 2.114 to this
function. Although the algebra of doing this is a bit messy, it may be worth the struggle. The
various components of Equation 2.114 are:

fi = k1o,

fo = ks,

fip = k(k—1)xt2x%, (2.117)
fon = Rk — 1)xixs 2,

S ' |
fip =koxy a5

So,
A1S3 = 2002 ifs + oo f T = (k= 1)}t 232 — 204 a3t 2a342
+ B3 (k — 1)x3k2x3k2

= 213 %3k 2x3F-2(-1) (2.118)

b

which is clearly negative, as is required for quasi-concavity.

Whether or not the function f is concave depends on the value of % If £ < 0.5 the
function is indeed concave. An intuitive way to see this is to consider only points where
X, = x,. For these points,

y = (¥)* = a2k, (2.119)

which, for & < 0.5, is concave. Alternatively, for & > 0.5, this function is convex.
A more definitive proof makes use of the partial derivatives from Equation 2.117. In this
case the condition for concavity can be expressed as

fafia = fha = (k= 134232 — a2
=1t 203 2 (k — 1)~ k]
— R (264 1), 2120
and this expression is positive (as is required for concavity) for
(=2k+1)>0 or k<O0.S5.

On the other hand, the function is convex for £ > 0.5.

A graphic illustration. Figure 2.4 provides three-dimensional illustrations of three specific
examples of this function: for £ = 0.2, £ = 0.5, and %# = 1. Notice that in all three cases the
level curves of the function have hyperbolic, convex shapes. That is, for any fixed value of y
the functions are quite similar. This shows the quasi-concavity of the function. The primary
differences among the functions are illustrated by the way in which the value of y increases as

(continued)
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EXAMPLE 2.10 CONTINUED

FIGURE 2.4

both «’s increase together. In Figure 2.4a (when % = 0.2), the increase in y slows as the x’s
increase. This gives the function a rounded, teacuplike shape that indicates its concavity. For
k = 0.5, y appears to increase linearly with increases in both of the x’s. This is the borderline
between concavity and convexity. Finally, when 2 =1 (as in Figure 2.4c), simultaneous
increases in the values of both of the &’s increase y very rapidly. The spine of the function
looks convex to reflect such increasing returns.

Concave and Quasi-Concave Functions

In all three cases these functions are quasi-concave. For a fixed y, their level curves are convex. But
only for £ = 0.2 is the function strictly concave. The case £ = 1.0 clearly shows nonconcavity because
the function is not below its tangent plane.

@k =02 (b) k = 0.5

() k = 1.0
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A careful look at Figure 2.4a suggests that any function that is concave will also be quasi-
concave. You are asked to prove that this is indeed the case in Problem 2.8. This example
shows that the converse of this statement is not true—quasi-concave functions need not
necessarily be concave. Most functions we will encounter in this book will also illustrate this
fact; most will be quasi-concave but not necessarily concave.

QUERY: Explain why the functions illustrated both in Figure 2.4a and 2.4c would have maxi-

mum values if the x’s were subject to a linear constraint, but only the graph in Figure 2.4a
would have an unconstrained maximum.

HOMOGENEOUS FUNCTIONS

Many of the functions that arise naturally out of economic theory have additional mathemat-
ical properties. One particularly important set of properties relates to how the functions
behave when all (or most) of their arguments are increased proportionally. Such situations
arise when we ask questions such as what would happen if all prices increased by 10 percent or
how would a firm’s output change if it doubled all of the inputs that it uses. Thinking about
these questions leads naturally to the concept of homogeneous functions. Specifically, a
function f(x;,%,, ..., %, ) is said to be homogeneous of degree k it

Flawy, oy, .. tx,) = t* fo),%,,...,,). (2.121)

The most important examples of homogeneous functions are those for which 2 =1 or
k= 0. In words, when a function is homogeneous of degree one, a doubling of all of its
arguments doubles the value of the function itself. For functions that are homogeneous of
degree 0, a doubling of all of its arguments leaves the value of the function unchanged.
Functions may also be homogeneous for changes in only certain subsets of their arguments—
that is, a doubling of some of the x’s may double the value of the function if the other
arguments of the function are held constant. Usually, however, homogeneity applies to
changes in all of the arguments in a function.

Homogeneity and derivatives

If a function is homogeneous of degree % and can be differentiated, the partial derivatives of
the function will be homogeneous of degree & — 1. A proof of this follows directly from the
definition of homogeneity. For example, differentiating Equation 2.121 with respect to its
first argument gives

af(txb“"txn) = tkaf(xb'--)xn)
0%y 0%,

or

filtwy, .. tx,) = t" 1 f (%, 00 3,), (2.122)

ey Ny,

which shows that f; meets the definition for homogeneity of degree 2 — 1. Because marginal
ideas are so prevalent in microeconomic theory, this property shows that some important
properties of marginal effects can be inferred from the properties of the underlying function
itself.
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Euler’s theorem

Another useful feature of homogeneous functions can be shown by differentiating the
definition for homogeneity with respect to the proportionality factor, z. In this case, we
differentiate the right side of Equation 2.121 first:

RthLE (%, o,) = X0 fy (B0, .o t,) + o &, f, (B, o 8.
If we let ¢ = 1, this equation becomes
kf (%y,...,%,) = 2. f1(%,...,%,) + - +x, f,(%,...,%,). (2.123)

This equation is termed Euler’s theorem (after the mathematician who also discovered the
constant ¢) for homogeneous functions. It shows that, for a homogeneous function, there is a
definite relationship between the values of the function and the values of'its partial derivatives.
Several important economic relationships among functions are based on this observation.

Homothetic functions

A homothetic function is one that is formed by taking a monotonic transformation of a
homogeneous function.!” Monotonic transformations, by definition, preserve the order of
the relationship between the arguments of a function and the value of that function. If certain
sets of &’s yield larger values for £, they will also yield larger values for a monotonic transfor-
mation of f. Because monotonic transformations may take many forms, however, they would
not be expected to preserve an exact mathematical relationship such as that embodied in
homogeneous functions. Consider, for example, the function f(x,y) = x-y. Clearly this
function is homogeneous of degree 2—a doubling of its two arguments will multiply the value
of the function by 4. But the monotonic transformation, F, that simply adds 1 to f [that s,
F(f)=f+1=xy+ 1] is not homogeneous at all. Hence, except in special cases, homo-
thetic functions do not possess the homogeneity properties of their underlying functions.
Homothetic functions do, however, preserve one nice feature of homogeneous functions.
This property is that the implicit trade-offs among the variables in a function depend only on
the ratios of those variables, not on their absolute values. Here we show this for the simple
two-variable, implicit function f(x, y) = 0. It will be casier to demonstrate more general cases
when we get to the economics of the matter later in this book.

Equation 2.28 showed that the implicit trade-oft between & and y for a two-variable
function is given by

L
dx fy

If we assume [ is homogeneous of degree &, its partial derivatives will be homogeneous of
degree 2 — 1 and the implicit trade-off between x and y is

dy () fw ) (2.124)

de  tf () fi(mty)
Now let # = 1/y and Equation 2.124 becomes
ﬂ _ f;c(x/y, 1) (2.125)

v f(%/5,1)°

which shows that the trade-off depends only on the ratio of x to y. Now if we apply
any monotonic transformation, F (with F' > 0), to the original homogeneous function £,
we have

7Because a limiting case of a monotonic transformation is to leave the function unchanged, all homogeneous functions are
also homothetic.
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dy _ Ff(x/y1) _ filx/y,1) (2.126)

i Ff(x/y,1)  f(x/y1)°
and this shows both that the trade-off is unaffected by the monotonic transformation and
that it remains a function only of the ratio of x to y. In Chapter 3 (and elsewhere) this
property will make it very convenient to discuss some theoretical results with simple two-
dimensional graphs, for which we need not consider the overall levels of key variables, but
only their ratios.
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EXAMPLE 2.11 Cardinal and Ordinal Properties

In applied economics it is sometimes important to know the exact numerical relationship
among variables. For example, in the study of production, one might wish to know
precisely how much extra output would be produced by hiring another worker. This is a
question about the “cardinal” (i.e., numerical) properties of the production function. In
other cases, one may only care about the order in which various points are ranked. In the
theory of utility, for example, we assume that people can rank bundles of goods and will
choose the bundle with the highest ranking, but that there are no unique numerical values
assigned to these rankings. Mathematically, ordinal properties of functions are preserved by
any monotonic transformation because, by definition, a monotonic transformation pre-
serves order. Usually, however, cardinal properties are not preserved by arbitrary mono-
tonic transformations.

These distinctions are illustrated by the functions we examined in Example 2.10. There
we studied monotonic transformations of the function

floeg, 25) = (w20)" (2.127)

by considering various values of the parameter 2. We showed that quasi-concavity (an
ordinal property) was preserved for all values of 2. Hence, when approaching problems that
focus on maximizing or minimizing such a function subject to linear constraints we need not
worry about precisely which transformation is used. On the other hand, the function in
Equation 2.127 is concave (a cardinal property) only for a narrow range of values of k. Many
monotonic transformations destroy the concavity of f.

The function in Equation 2.127 also can be used to illustrate the difference between
homogeneous and homothetic functions. A proportional increase in the two arguments of f
would yield

fltwy, txy) = 2%, 5, = t24F (%), %,). (2.128)

Hence, the degree of homogeneity for this function depends on k—that is, the degree of
homogeneity is not preserved independently of which monotonic transformation is used.
Alternatively, the function in Equation 2.127 is homothetic because

k—1 ..k
dv,  h_ kT x %
- - koak—1 .
dx, 5 lesc’y x5 X,

That is, the trade-off between &, and x; depends only on the ratio of these two variables and
is unaffected by the value of k. Hence, homotheticity is an ordinal property. As we shall see,
this property is quite convenient when developing graphical arguments about economic
propositions.

(2.129)

QUERY: How would the discussion in this example be changed if we considered monotonic
transformations of the form f(x,,x,, k) = x,x, + k for various values of %?
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INTEGRATION

Integration is another of the tools of calculus that finds a number of applications in microeco-
nomic theory. The technique is used both to calculate areas that measure various economic
outcomes and, more generally, to provide a way of summing up outcomes that occur over
time or across individuals. Our treatment of the topic here necessarily must be brief, so readers
desiring a more complete background should consult the references at the end of this chapter.

Anti-derivatives

Formally, integration is the inverse of differentiation. When you are asked to calculate the
integral ofa function, £(x), you are being asked to find a function that has f(x) as its derivative.
If we call this “anti-derivative” F(x), this function is supposed to have the property that

AF (x)
ax

If such a function exists then we denote it as

= F(x) = f(%). (2.130)

F(x) = ff(x) dx. (2.131)

The precise reason for this rather odd-looking notation will be described in detail later. First,
let’s look at a few examples. If f(x) = & then

F(x)ff(x)dxfxdxo;z+ C, (2.132)

where C is an arbitrary “constant of integration” that disappears upon differentiation. The
correctness of this result can be easily verified:
_d(x?/2+ Q)

F =— ‘= =x. 2.1
(x) T x+0=x (2.133)

Calculating anti-derivatives

Calculation of anti-derivatives can be extremely simple, or difficult, or agonizing, or impossi-
ble, depending on the particular f(«x) specified. Here we will look at three simple methods for
making such calculations, but, as you might expect, these will not always work.

1. Creative guesswork. Probably the most common way of finding integrals (anti-
derivatives) is to work backwards by asking “what function will yield f'(x) as its derivative?”
Here are a few obvious examples:

x3
F) = [wae= 5 v c,
x”+1
F(x) :fx dx = n+1+c’
2 ax3  bx?
x _ a”’
F(x)_f” “= e ©

Flx) = f(i) dx = In(|x]) + C,

F(x) = f(lnx)dx: xlnx —x+ C.
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You should use differentiation to check that all of these obey the property that F'(x) = f(x).
Notice that in every case the integral includes a constant of integration because anti-deriva-
tives are unique only up to an additive constant which would become zero upon differentia-
tion. For many purposes, the results in Equation 2.134 (or trivial generalizations of them)
will be sufficient for our purposes in this book. Nevertheless, here are two more methods that
may work when intuition fails.

2. Change of variable. A clever redefinition of variables may sometimes make a function
much easier to integrate. For example, it is not at all obvious what the integral of 2x/(1 4 x2)
is. But, if we let y = 1 + &2, then dy = 2xdx and

fl 2 f dy =In(|y|) = In(]1 +#7|). (2.135)

The key to this procedure is in breaking the original function into a term in y and a term in
dy. It takes a lot of practice to see patterns for which this will work.

3. Integration by parts. A similar method for finding integrals makes use of the difteren-
tial expression duy = udy + vdu for any two functions » and ». Integration of this differential
yields

fduv:uv:fudv+fvdu or fudv:uv—fvdu. (2.136)

Here the strategy is to define functions # and » in a way that the unknown integral on the
left can be calculated by the difference between the two known expressions on the right. For
example, it is by no means obvious what the integral of x¢* is. But we can define # = x (so
du = dx) and dv = ¢“dx (so v = ¢¥). Hence we now have

fxe”dx:fudV: uv—fvdu:xex—fe”dx: (x—1)e* + C. (2.137)

Again, only practice can suggest useful patterns in the ways in which # and » can be defined.

Definite integrals

The integrals we have been discussing so far are “indefinite” integrals—they provide only a
general function that is the anti-derivative of another function. A somewhat difterent, though
related, approach uses integration to sum up the area under a graph of a function over some
defined interval. Figure 2.5 illustrates this process. We wish to know the area under the
function f(x) from x = a to x = &. One way to do this would be to partition the interval into
narrow slivers of x(Ax) and sum up the areas of the rectangles shown in the figure. That is:

area under f(x Z Sf(x; (2.138)

where the notation is intended to indicate that the height of each rectangle is approximated
by the value of f(x) for a value of x in the interval. Taking this process to the limit by
shrinking the size of the Ax intervals yields an exact measure of the area we want and is
denoted by:

area under f(x f flx (2.139)

This then explains the origin of the oddly shaped integral sign—it is a stylized S, indicating
“sum.” As we shall see, integrating is a very general way of summing the values of'a continuous
function over some interval.
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FIGURE 2.5 Definite Integrals Show the Areas under the Graph of a Function

Definite integrals measure the area under a curve by summing rectangular areas as shown in the
graph. The dimension of each rectangle is f'(x)dx.

f(x)

N~ _—

Fundamental theorem of calculus

Evaluating the integral in Equation 2.139 is very simple if we know the anti-derivative of
f(x), say, F(x). In this case we have

x=b
area under f(x) = f f(x)dx = F(b) — F(a). (2.140)

That is, all we need do is calculate the anti-derivative of f£(x) and subtract the value of this
function at the lower limit of integration from its value at the upper limit of integration. This
result is sometimes termed the “fundamental theorem of calculus” because it directly ties
together the two principal tools of calculus, derivatives and integrals. In Example 2.12, we
show that this result is much more general than simply a way to measure areas. It can be
used to illustrate one of the primary conceptual principles of economics—the distinction
between “stocks” and “flows.”

EXAMPLE 2.12 Stocks and Flows

The definite integral provides a useful way for summing up any function that is providing a
continuous flow over time. For example, suppose that net population increase (births minus
deaths) for a country can be approximated by the function f(¢) = 1,000£°%%*. Hence, the net
population change is growing at the rate of 2 percent per year—it is 1,000 new people in
year 0, 1,020 new people in the first year, 1,041 in the second year, and so forth. Suppose we
wish to know how much in total the population will increase within 50 years. This might be a
tedious calculation without calculus, but using the fundamental theorem of calculus provides
an easy answer:
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t=50 t=50

50
increase in population = f f(¢)de = f 1,0006%%%" 4t = F(t)
=0 =0 0
1,000°0% [3°1,000¢
= =2 == — 50,000 = 85,914  (2.141)
002 |, 002 : ’

[where the notation |’ indicates that the expression is to be evaluated as F(&) — F(a)].
Hence, the conclusion is that the population will grow by nearly 86,000 people over the
next 50 years. Notice how the fundamental theorem of calculus ties together a “flow”
concept, net population increase (which is measured as an amount per year), with a “stock”
concept, total population (which is measured at a specific date and does not have a time
dimension). Note also that the 86,000 calculation refers only to the total increase between
year zero and year fifty. In order to know the actual total population at any date we would
have to add the number of people in the population at year zero. That would be similar to
choosing a constant of integration in this specific problem.

Now consider an application with more economic content. Suppose that total costs for a
particular firm are given by C(g) = 0.14> 4+ 500 (where g represents output during some
period). Here the term 0.1 47 represents variable costs (costs that vary with output) whereas
the 500 figure represents fixed costs. Marginal costs for this production process can be found
through differentiation—MC = dC(q)/dq = 0.2g—hence, marginal costs are increasing
with g4 and fixed costs drop out upon differentiation. What are the total costs associated
with producing, say, 4 = 1002 One way to answer this question is to use the total cost
function directly: C(100) = 0.1(100)* + 500 = 1,500. An alternative way would be to
integrate marginal cost over the range 0 to 100 to get total variable cost:

~100
1 100

variable cost = f 029dqg=014* =1,000-0=1,000, (2.142)
0
7=0

to which we would have to add fixed costs of 500 (the constant of integration in this
problem) to get total costs. Of course, this method of arriving at total cost is much more
cumbersome than just using the equation for total cost directly. But the derivation does
show that total variable cost between any two output levels can be found through integration
as the area below the marginal cost curve—a conclusion that we will find useful in some
graphical applications.

QUERY: How would you calculate the total variable cost associated with expanding output
from 100 to 110? Explain why fixed costs do not enter into this calculation.

Differentiating a definite integral

Occasionally we will wish to differentiate a definite integral—usually in the context of seeking
to maximize the value of this integral. Although performing such differentiations can some-
times be rather complex, there are a few rules that should make the process easier.

1. Diffeventiation with vespect to the varviable of integration. This is a trick question,
but instructive nonetheless. A definite integral has a constant value; hence its derivative is
zero. That is:

a4 f(x) dx
dx

The summing process required for integration has already been accomplished once we write
down a definite integral. It does not matter whether the variable of integration is & or ¢ or

=0. (2.143)
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anything else. The value of this integrated sum will not change when the variable x changes,
no matter what x is (but see rule 3 below).

2. Diffeventiation with vespect to the upper bound of integration. Changing the upper
bound of integration will obviously change the value of a definite integral. In this case, we
must make a distinction between the variable determining the upper bound of integration
(say, &) and the variable of integration (say, #). The result then is a simple application of the
fundamental theorem of calculus. For example:

dfs f(H)dt  d[F(x) - F(a)]

dw dx =f(x)-0=f(x), (2.144)

where F(x) is the antiderivative of f(x). By referring back to Figure 2.5 we can see why this
conclusion makes sense—we are asking how the value of the definite integral changes if x
increases slightly. Obviously, the answer is that the value of the integral increases by the
height of f(x) (notice that this value will ultimately depend on the specified value of x).

If the upper bound of integration is a function of x, this result can be generalized using
the chain rule:

Afa f(5)dr  d[F(g(x)) — F(a)] _d[F(g(x dy(x

0 e diFa() ~Flo) SO A0 s

where, again, the specific value for this derivative would depend on the value of x assumed.

Finally, notice that differentiation with respect to a lower bound of integration just
changes the sign of this expression:

Ay (08 dF®) - Fg()]__dF(ale) o0 g
dc s T A W e

3. Diffeventiation with vespect to another relevant varviable. In some cases we may wish
to integrate an expression that is a function of several variables. In general, this can involve
multiple integrals and differentiation can become quite complicated. But there is one simple
case that should be mentioned. Suppose that we have a function of two variables, f(x, ), and
that we wish to integrate this function with respect to the variable x. The specific value for this
integral will obviously depend on the value of y and we might even ask how that value
changes when y changes. In this case, it is possible to “differentiate through the integral sign”
to obtain a result. That is:

b
afy f(%,y) dx*f
T = f;,(x,y) dx. (2.147)

This expression shows that we can first partially differentiate £(x, y) with respect to y before
proceeding to compute the value of the definite integral. Of course, the resulting value may
still depend on the specific value that is assigned to ¥, but often it will yield more economic
insights than the original problem does. Some further examples of using definite integrals
are found in Problem 2.8.

DYNAMIC OPTIMIZATION

Some optimization problems that arise in microeconomics involve multiple periods.'® We are
interested in finding the optimal time path for a variable or set of variables that succeeds in
optimizing some goal. For example, an individual may wish to choose a path of lifetime

B Throughout this section we treat dynamic optimization problems as occurring over time. In other contexts, the same
techniques can be used to solve optimization problems that occur across a continuum of firms or individuals when the
optimal choices for one agent affect what is optimal for others.
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consumptions that maximizes his or her utility. Or a firm may seek a path for input and
output choices that maximizes the present value of all future profits. The particular feature of
such problems that makes them difficult is that decisions made in one period affect outcomes
in later periods. Hence, one must explicitly take account of this interrelationship in choosing
optimal paths. If decisions in one period did not affect later periods, the problem would not
have a “dynamic” structure—one could just proceed to optimize decisions in each period
without regard for what comes next. Here, however, we wish to explicitly allow for dynamic
considerations.

The optimal control problem

Mathematicians and economists have developed many techniques for solving problems in
dynamic optimization. The references at the end of this chapter provide broad introductions
to these methods. Here, however, we will be concerned with only one such method that has
many similarities to the optimization techniques discussed earlier in this chapter—the optimal
control problem. The framework of the problem is relatively simple. A decision maker wishes
to find the optimal time path for some variable x(z) over a specified time interval [z, ,].
Changes in x are governed by a differential equation:

dx(t)
dt

where the variable ¢(#) is used to “control” the change in x(z). In each period of time, the
decision maker derives value from x and ¢ according to the function f[x(#), ¢(#), ] and his
or her goal to optimize [ 2) flx(2),c(2), ¢] dt. Often this problem will also be subject to
“endpoint” constraints on the variable x. These might be written as x(z,) = x, and
x(t)) = xy.

Notice how this problem is “dynamic.” Any decision about how much to change «x this
period will affect not only the future value of x, it will also affect future values of the outcome
function f. The problem then is how to keep x(#) on its optimal path.

Economic intuition can help to solve this problem. Suppose that we just focused on the
function f and chose x and ¢ to maximize it at each instant of time. There are two difficulties
with this “myopic” approach. First, we are not really free to “choose” x at any time. Rather,
the value of x will be determined by its initial value x,, and by its history of changes as given by
Equation 2.148. A second problem with this myopic approach is that it disregards the
dynamic nature of the problem by not asking how this period’s decisions affect the future.
We need some way to reflect the dynamics of this problem in a single period’s decisions.
Assigning the correct value (price) to x at each instant of time will do just that. Because
this implicit price will have many similarities to the Lagrangian multipliers studied earlier in
this chapter, we will call it A(#). The value of x is treated as a function of time because the
importance of x can obviously change over time.

= glx(2),c(2), ], (2.148)

The maximum principle

Now let’s look at the decision maker’s problem at a single point in time. He or she must be
concerned with both the current value of the objective function f[x(#), c(¢), ¢] and with the
implied change in the value of x(¢) . Because the current value of x(#) is given by A(#)x(#), the
instantaneous rate of change of this value is given by:

AN(2)x(2)] dx(t) AN(2)
dt dt () dt

=\(2) (2.149)
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and so at any time 7 a comprehensive measure of the value of concern'® to the decision
maker is

H = fx(2), c(2), t]| + N(2)g[%(2), c(2), t] + 2(2) d):i(tt)'

This comprehensive value represents both the current benefits being received and the
instantaneous change in the value of x. Now we can ask what conditions must hold for x(#)
and ¢(¢) to optimize this expression.?® That is:

(2.150)

o fitNg, =0 or f =-N\g;

dc

oH aN(2) aN(2) (2.151)
ox ot N+ 7:0 or ﬁ“““”x:_T'

These are then the two optimality conditions for this dynamic problem. They are usually
referred to as the “maximum principle.” This solution to the optimal control problem was
first proposed by the Russian mathematician L. S. Pontryagin and his colleagues in the early
1960s.

Although the logic of the maximum principle can best be illustrated by the economic
applications we will encounter later in this book, a brief summary of the intuition behind
them may be helpful. The first condition asks about the optimal choice of ¢. It suggests that,
at the margin, the gain from ¢ in terms of the function /" must be balanced by the losses from ¢
in terms of the value of its ability to change x. That is, present gains must be weighed against
future costs.

The second condition relates to the characteristics that an optimal time path of x(#)
should have. It implies that, at the margin, any net gains from more current x (either in terms
of f or in terms of the accompanying value of changes in x) must be balanced by changes in
the implied value of x itself. That is, the net current gain from more x must be weighed
against the declining future value of x.

EXAMPLE 2.13 Allocating a Fixed Supply

As an extremely simple illustration of the maximum principle, assume that someone has
inherited 1,000 bottles of wine from a rich uncle. He or she intends to drink these bottles
over the next 20 years. How should this be done to maximize the utility from doing so?

Suppose that this person’s utility function for wine is given by #[c(#)] = In ¢(#). Hence the
utility from wine drinking exhibits diminishing marginal utility (#' > 0, %" < 0). This per-
son’s goal is to maximize

20 20
fu[c(t)} dt = flnc(t) dt. (2.152)
0 0

Let x(#) represent the number of bottles of wine remaining at time #. This series is con-
strained by x(0) = 1,000 and x(20) = 0. The differential equation determining the evolu-
tion of x(¢) takes the simple form:*'

We denote this current value expression by H to suggest its similarity to the Hamiltonian expression used in formal
dynamic optimization theory. Usually the Hamiltonian does not have the final term in Equation 2.150, however.

2ONotice that the variable x is not really a choice variable here—its value is determined by history. Differentiation with
respect to x can be regarded as implicitly asking the question: “If x(#) were optimal, what characteristics would it have?”

2'The simple form of this differential equation (where dx/dt depends only on the value of the control variable, ¢) means
that this problem is identical to one explored using the “calculus of variations” approach to dynamic optimization. In such
a case, one can substitute 4x/d¢ into the function f and the first-order conditions for a maximum can be compressed into
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S —e(e). (2.153)

That is, each instant’s consumption just reduces the stock of remaining bottles. The current
value Hamiltonian expression for this problem is

H =1Inc(t) + N—c(2)] + x(2) %, (2.154)

and the first-order conditions for a maximum are

oH 1
S ¢ 70

2.1
OH AN (2.155)
—:—:0
ox dt

The second of these conditions requires that N (the implicit value of wine) be constant over
time. This makes intuitive sense: because consuming a bottle of wine always reduces
the available stock by one bottle, any solution where the value of wine differed over time
would provide an incentive to change behavior by drinking more wine when it is cheap and
less when it is expensive. Combining this second condition for a maximum with the first
condition implies that ¢(#) itself must be constant over time. If ¢(¢) = k, the number of
bottles remaining at any time will be x(z) = 1,000 — kz. If £ = 50, the system will obey the
end point constraints x(0) = 1000 and x(20) = 0. Of course, in this problem you could
probably guess that the optimum plan would be to drink the wine at the rate of 50 bottles
per year for 20 years because diminishing marginal utility suggests one does not want to
drink excessively in any period. The maximum principle confirms this intuition.

More complicated utility. Now let’s take a more complicated utility function that may yield
more interesting results. Suppose that the utility of consuming wine at any date, #, is given by

ier- (LT AT g

Assume also that the consumer discounts future consumption at the rate 8. Hence this
person’s goal is to maximize

20 20
f ule(t)] dt = fe“@ At (2.157)
0 0
subject to the following constraints:
B ),
x(0) = 1,000, (2.158)
x(20) = 0.
Setting up the current value Hamiltonian expression yields
c(2)]” AN(t
H=¢ Bt¥+)\(—c) + x(2) pl(t)’ (2.159)
and the maximum principle requires that
(continued)

the single equation f, = dfy, ;,/dt, which is termed the “Euler equation.” In Chapter 17 we will encounter many Euler
equations.
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EXAMPLE 2.13 CONTINUED

% = e () —A=0 and
N (2.160)
ax a0

Hence, we can again conclude that the implicit value of the wine stock (\) should be
constant over time (call this constant %) and that

()] P =k or ¢(z)= kOO, (2.161)

So, optimal wine consumption should fall over time in order to compensate for the fact that
future consumption is being discounted in the consumer’s mind. If, for example, we let

8 =0.1 and vy = —1 (“reasonable” values, as we will show in later chapters), then
o(£) = k05,005t (2.162)
Now we must do a bit more work in choosing % to satisfy the endpoint constraints. We want
20 20 20
fc(t) A — fkfusfoos.t At — —20k05,-0.05¢ ) (2.163)
0 0
= 20k %3¢ = 1) = 12.64% % = 1,000.
Finally, then, we have the optimal consumption plan as
c(t) ~ 79¢7005, (2.164)

This consumption plan requires that wine consumption start out fairly high and decline at a
continuous rate of 5 percent per year. Because consumption is continuously declining, we
must use integration to calculate wine consumption in any particular year (x) as follows:
X X
X
consumption in year x ~ f c(t)dt = f 79¢ 095 gy — 1,580,005
o1 (2.165)

x—1 x—1
— 1’580(370.05(9071) _ 370.05x).
If x =1, consumption is about 77 bottles in this first year. Consumption then declines

smoothly, ending with about 30 bottles being consumed in the 20th year.

QUERY: Our first illustration was just an example of the second in which 8 = y = 0. Explain
how alternative values of these parameters will affect the path of optimal wine consumption.
Explain your results intuitively (for more on optimal consumption over time, see Chapter 17).

MATHEMATICAL STATISTICS

In recent years microeconomic theory has increasingly focused on issues raised by uncertainty
and imperfect information. To understand much of this literature, it is important to have a
good background in mathematical statistics. The purpose of this section is, therefore, to
summarize a few of the statistical principles that we will encounter at various places in this
book.
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Random variables and probability density functions

A random variable describes (in numerical form) the outcomes from an experiment that is
subject to chance. For example, we might flip a coin and observe whether it lands heads or
tails. If we call this random variable x, we can denote the possible outcomes (“realizations”)
of the variable as:

. 1 if coin is heads,
"1 0 if coin is tails.

Notice that, prior to the flip of the coin, & can be either 1 or 0. Only after the uncertainty is
resolved (that is, after the coin is flipped) do we know what the value of x is.*?

Discrete and continuous random variables

The outcomes from a random experiment may be either a finite number of possibilities or a
continuum of possibilities. For example, recording the number that comes up on a single die
is a random variable with six outcomes. With two dice, we could either record the sum of
the faces (in which case there are 12 outcomes, some of which are more likely than others) or
we could record a two-digit number, one for the value of each die (in which case there would
be 36 equally likely outcomes). These are examples of discrete random variables.

Alternatively, a continuous random variable may take on any value in a given range of real
numbers. For example, we could view the outdoor temperature tomorrow as a continuous
variable (assuming temperatures can be measured very finely) ranging from, say, —50°C to
+50°C. Of course, some of these temperatures would be very unlikely to occur, but in principle
the precisely measured temperature could be anywhere between these two bounds. Similarly,
we could view tomorrow’s percentage change in the value of a particular stock index as taking
on all values between —100% and, say, +1,000%. Again, of course, percentage changes around
0% would be considerably more likely to occur than would be the extreme values.

Probability density functions

For any random variable, its probability density function (PDF) shows the probability that
cach specific outcome will occur. For a discrete random variable, defining such a function
poses no particular difficulties. In the coin flip case, for example, the PDF [denoted by £(x)]
would be given by

remy-es
For the roll of a single die, the PDF would be:
fle=1)=1/6,
flx=2)=1/6,
flx=3)=1/6,
Fo—d)= 1/6, (2.167)
flx=5)=1/6,
f(x=6)=1/6.

22Sometimes random variables are denoted by & to make a distinction between variables whose outcome is subject
to random chance and (nonrandom) algebraic variables. This notational device can be useful for keeping track of what is
random and what is not in a particular problem and we will use it in some cases. When there is no ambiguity, however, we
will not employ this special notation.
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Notice that in both of these cases the probabilities specified by the PDF sum to 1.0. This is
because, by definition, one of the outcomes of the random experiment must occur. More
generally, if we denote all of the outcomes for a discrete random variable by x; fori = 1, ..., n,
then we must have:

> flx) =1 (2.168)
i=1

For a continuous random variable we must be careful in defining the PDF concept.
Because such a random variable takes on a continuum of values, if we were to assign any non-
zero value as the probability for a specific outcome (i.e., a temperature of +25.53470°C), we
could quickly have sums of probabilities that are infinitely large. Hence, for a continuous
random variable we define the PDF f(«x) as a function with the property that the probability
that x falls in a particular small interval dx is given by the area of f(x)dx. Using this
convention, the property that the probabilities from a random experiment must sum to 1.0
is stated as follows:

+oc
ff(x) dx = 1.0. (2.169)

A few important PDFs

Most any function will do as a probability density function provided that f(x) > 0 and the
function sums (or integrates) to 1.0. The trick, of course, is to find functions that mirror
random experiments that occur in the real world. Here we look at four such functions that we
will find useful in various places in this book. Graphs for all four of these functions are shown
in Figure 2.6.

1. Binomial distribution. This is the most basic discrete distribution. Usually x is
assumed to take on only two values, 1 and 0. The PDF for the binomial is given by:

fle=1)=p,
fle=0)=1-p, (2.170)
where 0<p<]1.
The coin flip example is obviously a special case of the binomial where p = 0.5.
2. Uniform distribution. This is the simplest continuous PDF. It assumes that the

possible values of the variable x occur in a defined interval and that each value is equally likely.
That is:

f(x):ﬁ fora <x<b;

(2.171)
flx)=0 forx < aorx>b.
Notice that here the probabilities integrate to 1.0:
T (1 Ly b
x a —a
dx = dx = = - = =1.0. 2.172
ff(x)x fb—ﬂ u b—a|, b—n b—a b-an ( )

3. Exponential distribution. This is a continuous distribution for which the probabilities
decline at a smooth exponential rate as x increases. Formally:
Ne ™ if x>0
s ={ ’

0 if x <0, (2.173)
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FIGURE 2.6 Four Common Probability Density Functions
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Random variables that have these PDFs are widely used. Each graph indicates the expected value of

the PDF shown.
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where A is a positive constant. Again, it is easy to show that this function integrates to 1.0:

4o
ff(x) dx =

0%8

0

NeMdx = —e ™| —0 - (~1) = 1.0.

(2.174)

4. Normal distribution. The Normal (or Gaussian) distribution is the most important in
mathematical statistics. It’s importance stems largely from the central limit theorem, which
states that the distribution of any sum of independent random variables will increasingly
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approximate the Normal distribution as the number of such variables increase. Because
sample averages can be regarded as sums of independent random variables, this theorem
says that any sample average will have a Normal distribution no matter what the distribution
of the population from which the sample is selected. Hence, it may often be appropriate to
assume a random variable has a Normal distribution if it can be thought of as some sort of
average.

The mathematical form for the Normal PDF is

flx) = L e (2.175)

and this is defined for all real values of x. Although the function may look complicated, a few
of its properties can be easily described. First, the function is symmetric around zero
(because of the &2 term). Second, the function is asymptotic to zero as x becomes very large
or very small. Third, the function reaches its maximal value at x = 0. This value is
1/v2m ~ 0.4. Finally, the graph of this function has a general “bell shape”—a shape used
throughout the study of statistics. Integration of this function is relatively tricky (though
easy in polar coordinates). The presence of the constant 1/v/2 is needed if the function is
to integrate to 1.0.

Expected value

The expected value of a random variable is the numerical value that the random variable might
be expected to have, on average.*® It is the “center of gravity” of the probability density
function. For a discrete random variable that takes on the values x;, %, ..., x,,, the expected
value is defined as

E(x) = z": x; f(«;). (2.176)
i—1

That is, each outcome is weighted by the probability that it will occur and the result is
summed over all possible outcomes. For a continuous random variable, Equation 2.176 is
readily generalized as

E(x) = f xf(x) dx. (2.177)

Again, in this integration, each value of x is weighted by the probability that this value will
occur.

The concept of expected value can be generalized to include the expected value of any
function of a random variable [say, g(x)]. In the continuous case, for example, we would write

400

Elg)) = [ o)) . (2.178)

—®

23The expected value of a random variable is sometimes referred to as the mean of that variable. In the study of sampling
this can sometimes lead to confusion between the expected value of a random variable and the separate concept of the
sample arithmetic average.



Chapter 2 Mathematics for Microeconomics

As a special case, consider a linear function ¥ = ax + 4. Then
+o0

E(y) = E(ax+b) = f(ax + b)f (x) dx

—

4o

afxf(x) dx + bff(x) dx = aE(x)+b.  (2.179)

—©

Sometimes expected values are phrased in terms of the cumulntive distribution function
(CDF) F(x), defined as

F(x) = ff(t) dt. (2.180)

That is, F(x) represents the probability that the random variable ¢ is less than or equal to .
With this notation, the expected value of g(x) is defined as

o0

E[g(x)] = fg(x) dF(x). (2.181)

—®

Because of the fundamental theorem of calculus, Equation 2.181 and Equation 2.178 mean
exactly the same thing.

69

EXAMPLE 2.14 Expected Values of a Few Random Variables

The expected values of each of the random variables with the simple PDFs introduced earlier
are easy to calculate. All of these expected values are indicated on the graphs of the functions’
PDFs in Figure 2.6.

1. Binomial. In this case:

Ex)=1-fx=1)+0-f(x=0)=1-p+0-(1-p)=p. (2.182)

For the coin flip case (where p = 0.5), this says that E(x) = p = 0.5—the expected value of
this random variable is, as you might have guessed, one half.
2. Uniform. For this continuous random variable,

b
b? B 2> b+a

2(b-a) 2b-a) 2

a

b
2
E(x) = f T odw= (2.183)

b—a 2(b—a)

Again, as you might have guessed, the expected value of the uniform distribution is precisely
halfway between 2 and 4.
3. Exponential. For this case of declining probabilities:

1 = 1
E(x) = [ xhe Mdyw = —xe M ——¢ M| == 2.184
(%) fx e % xe At ( )
0
where the integration follows from the integration by parts example shown earlier in this
chapter (Equation 2.137). Notice here that the faster the probabilities decline, the lower is
the expected value of x. For example, if A = 0.5 then E(x) = 2, whereas if A = 0.05 then

E(x) = 20.

(continued)
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EXAMPLE 2.14 CONTINUED

4. Normal. Because the Normal PDF is symmetric around zero, it seems clear that
E(x) = 0. A formal proof uses a change of variable integration by letting # = x? /2 (du = xdx):
1

+:x: +oc
1 2 1 2
/2 4 :—f gy = ———[—e /2 = ——[0-0]=0. (2.185)
xe £ e u e . .
J‘\/an' \/2frr_ \/2’17[ ]fm \/211'[ ]

Of course, the expected value of a normally distributed random variable (or of any random
variable) may be altered by a linear transformation, as shown in Equation 2.179.

o]

QUERY: A linear transformation changes a random variable’s expected value in a very
predictable way—if y = ax + b, then E(y) = aE(x) + b. Hence, for this transformation
[say, b(x)] we have E[h(x)] = h[E(x)]. Suppose instead that x were transformed by a concave
function, say g(x) with 4/ > 0 and 4” < 0. How would E[g(x)] compare to g[E(x)]?

Note: This is an illustration of Jensen’s inequality, a concept we will pursue in detail in
Chapter 7. See also Problem 2.13.

Variance and standard deviation

The expected value of a random variable is a measure of central tendency. On the other hand,
the variance of a random variable [denoted by o2 or Var(x)] is a measure of dispersion.
Specifically, the variance is defined as the “expected squared deviation” of'a random variable
from its expected value. Formally:
o0
Var(x) = o2 = E[(x — E(x))*] = f (x — E(x))*f(x) dw. (2.186)

—

Somewhat imprecisely, the variance measures the “typical” squared deviation from the
central value of a random variable. In making the calculation, deviations from the expected
value are squared so that positive and negative deviations from the expected value will both
contribute to this measure of dispersion. After the calculation is made, the squaring process
can be reversed to yield a measure of dispersion that is in the original units in which the
random variable was measured. This square root of the variance is called the “standard
deviation” and is denoted as o, (= 1/02). The wording of the term effectively conveys its
meaning: o, is indeed the typical (“standard”) deviation of a random variable from its
expected value.

When a random variable is subject to a linear transformation, its variance and standard
deviation will be changed in a fairly obvious way. If y = ax + &4, then

5 = f[ax + b — E(ax + b)]*f(x) dx = f a*x — E(x)]*f(x) dx = a*aol. (2.187)

Hence, addition of a constant to a random variable does not change its variance, whereas
multiplication by a constant multiplies the variance by the square of the constant. It is clear
therefore that multiplying a variable by a constant multiplies its standard deviation by that
constant: ¢, = a0,.
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EXAMPLE 2.15 Variances and Standard Deviations for Simple Random Variables

71

Knowing the variances and standard deviations of the four simple random variables we have
been looking at can sometimes be quite useful in economic applications.

1. Binomial. The variance of the binomial can be calculated by applying the definition in
its discrete analog:

o2 Z<x B () = (1— )% p+ (0 p)*(1— p)

= A=p)-p*+7°) =p(1-p) (2.188)
Hence, o, = \/p(1 — p). One implication of this result is that a binomial variable has the
largest variance and standard deviation when p = 0.5, in which case 02 = 0.25and o, = 0.5.
Because of the relatively flat parabolic shape of p(1 — p), modest deviations of p from 0.5 do not
change this variance substantially.
2. Uniform. Calculating the variance of the uniform distribution yields a mildly interest-

ing result:
b
L’f Catd\ 1 (a1
T2 ) =l P2 3(6—a)

(b—a)® (a- ﬂ (b — )

b

1
- 3(b—-a)

3 3 =12 (2.189)

This is one of the few places where the number 12 has any use in mathematics other than in
measuring quantities of oranges or doughnuts.

3. Exponentinl. Integrating the variance formula for the exponential is relatively laborious.
Fortunately, the result is quite simple; for the exponential, it turns out that o2 = 1/\* and
o, = 1/\. Hence, the mean and standard deviation are the same for the exponential distribu-
tion—it is a “one-parameter distribution.”

4. Normal. In this case also, the integration can be burdensome. But again the result is
simple: for the Normal distribution, 6 = o, = 1. Areas below the Normal curve can be
readily calculated and tables of these are available in any statistics text. Two useful facts about
the Normal PDF are:

+1 +2
ff(x) dx ~ 0.68 and ff(x) dx ~ 0.95. (2.190)
-1 -2

That is, the probability is about two thirds that a Normal variable will be within 1 standard
deviation of the expected value and “most of the time” (i.e., with probability 0.95) it will be
within £2 standard deviations.

Standardizing the Normal. If the random variable x has a standard Normal PDF, it will
have an expected value of 0 and a standard deviation of 1. However, a simple linear
transformation can be used to give this random variable any desired expected value () and
standard deviation (o). Consider the transformation y = ox + . Now

E(y) =cE(x) +p=p and Var(y) = oi =o?Var(x) = o2, (2.191)

Reversing this process can be used to “standardize” any Normally distributed random variable
(y) with an arbitrary expected value () and standard deviation (o) (this is sometimes denoted

(continued)
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EXAMPLE 2.15 CONTINUED

as y ~ N(p, 0)) by using z= (y— p)/o. For example, SAT scores (y) are distributed
Normally with an expected value of 500 points and a standard deviation of 100 points (that
is, ¥y ~ N(500,100)). Hence, z = (y — 500)/100 has a standard Normal distribution with
expected value 0 and standard deviation 1. Equation 2.190 shows that approximately
68 percent of all scores lie between 400 and 600 points and 95 percent of all scores lie between
300 and 700 points.

QUERY: Suppose that the random variable x is distributed uniformly along the interval
[0, 12]. What are the mean and standard deviation of x? What fraction of the x distribution
is within 1 standard deviation of the mean? What fraction of the distribution is within +2
standard deviations of the expected value? Explain why this differs from the fractions com-
puted for the Normal distribution.

Covariance

Some economic problems involve two or more random variables. For example, an investor
may consider allocating his or her wealth among several assets the returns on which are taken
to be random. Although the concepts of expected value, variance, and so forth carry over
more or less directly when looking at a single random variable in such cases, it is also necessary
to consider the relationship between the variables to get a complete picture. The concept of
covariance is used to quantify this relationship. Before providing a definition, however, we
will need to develop some background.

Consider a case with two continuous random variables, x and y. The probability density
function for these two variables, denoted by f(x, %), has the property that the probability
associated with a set of outcomes in a small area (with dimensions dxdy) is given by
f(x,)dxdy. To be a proper PDF, it must be the case that:

+o0 400

f(x,y) > 0 and f ff(x,y)dxﬁlyzl. (2.192)

The single-variable measures we have already introduced can be developed in this two-

variable context by “integrating out” the other variable. That is,
+OO +OC

E(x) = J. fxf(x,y) dydx and
o (2.193)
Var(x) = f f[x — E(x)]*f (x,y) dy dw.

In this way, the parameters describing the random variable x are measured over all possible
outcomes for y after taking into account the likelihood of those various outcomes.

In this context, the covariance between x and y seeks to measure the direction of
association between the variables. Specifically the covariance between x and y [denoted as
Cov(x,y)] is defined as

4o 400

Cov(x,y) = f f [x — E(x)| [y — E(y)]|f (%, y) dx dy. (2.194)

—0 —oo
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The covariance between two random variables may be positive, negative, or zero. If values of x
that are greater than E(x) tend to occur relatively frequently with values of y that are greater
than E(y) (and similarly, if low values of x tend to occur together with low values of y), then
the covariance will be positive. In this case, values of x and y tend to move in the same
direction. Alternatively, if high values of x tend to be associated with low values for y (and vice
versa), the covariance will be negative.

Two random variables are defined to be independent it the probability of any particular
value of, say, x is not affected by the particular value of y that might occur (and vice versa).?*
In mathematical terms, this means that the PDF must have the property that f(x,y) =
4(x)h(y)—that is, the joint probability density function can be expressed as the product of
two single-variable PDFs. If x and y are independent, their covariance will be zero:

Coviwy) = [ [l By~ Blat)bty) deay
= f[x — E(x)]g(x) dx - f[y — E(y)]|b(y)dy=0-0=0. (2.195)

The converse of this statement is not necessarily true, however. A zero covariance does not
necessarily imply statistical independence.

Finally, the covariance concept is crucial for understanding the variance of sums or
differences of random variables. Although the expected value of a sum of two random
variables is (as one might guess) the sum of their expected values:

Bty = [ [t fiw) deay
o -
= fxf(x,y) dy dx + fyf(x,y) dxdy = E(x)+ E(y), (2.196)

the relationship for the variance of such a sum is more complicated. Using the definitions we
have developed yields

—+00 40

Var(x+y) = f f[x+y—E(x+y)]2f(x,y)dxdy

—0 —00

—400 400

[ [t B 45— B (s.5) ety

40 oo

= [ [ e B+~ B+ 20— By~ B, ) ey

= Var(x) + Var(y) + 2 Cov(x,y). (2.197)

Hence, it w and y are independent then Var(x + y) = Var(x) 4+ Var(y). The variance of the sum
will be greater than the sum of the variances if the two random variables have a positive
covariance and will be less than the sum of the variances if they have a negative covariance.
Problems 2.13 and 2.14 provide further details on statistical issues that arise in microeconomic
theory.

2*A formal definition relies on the concept of conditional probability. The conditional probability of an event B given that
A has occurred (written P(B|A) is defined as P(B|A) = P(Aand B)/P(A); B and A are defined to be independent if
P(B|A) = P(B). In this case, P(Aand B) = P(A)- P(B).
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SUMMARY

Despite the formidable appearance of some parts of this
chapter, this is not a book on mathematics. Rather, the
intention here was to gather together a variety of tools that
will be used to develop economic models throughout the
remainder of the text. Material in this chapter will then be
useful as a handy reference.

One way to summarize the mathematical tools intro-

duced in this chapter is by stressing again the economic
lessons that these tools illustrate:

Using mathematics provides a convenient, shorthand
way for economists to develop their models. Implica-
tions of various economic assumptions can be studied
in a simplified setting through the use of such mathe-
matical tools.

The mathematical concept of the derivatives of a func-
tion is widely used in economic models because econo-
mists are often interested in how marginal changes in
one variable affect another variable. Partial derivatives
are especially useful for this purpose because they are
defined to represent such marginal changes when all
other factors are held constant.

The mathematics of optimization is an important tool for
the development of models that assume that economic
agents rationally pursue some goal. In the unconstrained
case, the first-order conditions state that any activity that
contributes to the agent’s goal should be expanded up to
the point at which the marginal contribution of further
expansion is zero. In mathematical terms, the first-order
condition for an optimum requires that all partial deriva-
tives be zero.

Most economic optimization problems involve constraints
on the choices agents can make. In this case the first-order
conditions for a maximum suggest that each activity be
operated at a level at which the ratio of the marginal
benefit—of the activity to its marginal cost is the same for
all activities actually used. This common marginal benefit—
marginal cost ratio is also equal to the Lagrangian multi-
plier, which is often introduced to help solve constrained
optimization problems. The Lagrangian multiplier can
also be interpreted as the implicit value (or shadow price)
of the constraint.

The implicit function theorem is a useful mathematical
device for illustrating the dependence of the choices that
result from an optimization problem on the parameters

of that problem (for example, market prices). The enve-
lope theorem is useful for examining how these optimal
choices change when the problem’s parameters (prices)
change.

Some optimization problems may involve constraints that
are inequalities rather than equalities. Solutions to these
problems often illustrate “complementary slackness.”
That is, either the constraints hold with equality and
their related Lagrangian multipliers are nonzero, or the
constraints are strict inequalities and their related Lagrang-
ian multipliers are zero. Again this illustrates how the
Lagrangian multiplier implies something about the “im-
portance” of constraints.

The first-order conditions shown in this chapter are only
the necessary conditions for a local maximum or mini-
mum. One must also check second-order conditions that
require that certain curvature conditions be met.

Certain types of functions occur in many economic prob-
lems. Quasi-concave functions (those functions for
which the level curves form convex sets) obey the second-
order conditions of constrained maximum or minimum
problems when the constraints are linear. Homothetic
functions have the useful property that implicit trade-offs
among the variables of the function depend only on the
ratios of these variables.

Integral calculus is often used in economics both as a way
of describing areas below graphs and as a way of sum-
ming results over time. Techniques that involve various
ways of differentiating integrals play an important role in
the theory of optimizing behavior.

Many economic problems are dynamic in that decisions
at one date affect decisions and outcomes at later dates.
The mathematics for solving such dynamic optimization
problems is often a straightforward generalization of
Lagrangian methods.

Concepts from mathematical statistics are often used in
studying the economics of uncertainty and information.
The most fundamental concept is the notion of a ran-
dom variable and its associated probability density func-
tion. Parameters of this distribution, such as its expected
value or its variance, also play important roles in many
economic models.
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PROBLEMS

2.1

Suppose U(x,y) = 45> + 35
a. Calculate 90U /ax, 0U /dy.
b. Evaluate these partial derivatives at x = 1, y = 2.
c. Write the total differential for U.

d. Calculate dy/dx for AU = 0—that is, what is the implied trade-oft between x and y holding U
constant?

e. Show U =16whenx =1,y =2.

f. In what ratio must x and y change to hold U constant at 16 for movements away from x = 1,
y=2

g. More generally, what is the shape of the U = 16 contour line for this function? What is the
slope of that line?

2.2
Suppose a firm’s total revenues depend on the amount produced (g) according to the function
R=70q—¢*
Total costs also depend on g:

C = 4% + 304+ 100.

a. What level of output should the firm produce in order to maximize profits (R — C)? What will
profits be?

b. Show that the second-order conditions for a maximum are satisfied at the output level found in
part (a).

¢. Does the solution calculated here obey the “marginal revenue equals marginal cost” rule?
Explain.

2.3

Suppose that f(«x,y) = xy. Find the maximum value for f if x and y are constrained to sum to 1. Solve
this problem in two ways: by substitution and by using the Lagrangian multiplier method.

2.4
The dual problem to the one described in Problem 2.3 is

minimize x+y
subject to xy = 0.25.

Solve this problem using the Lagrangian technique. Then compare the value you get for the Lagrangian
multiplier to the value you got in Problem 2.3. Explain the relationship between the two solutions.

2.5

The height of a ball that is thrown straight up with a certain force is a function of the time (#) from which
it is released given by £(¢) = —0.5422 + 40¢ (where g is a constant determined by gravity).
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a. How does the value of # at which the height of the ball is at a maximum depend on the
parameter g?

b. Use your answer to part (a) to describe how maximum height changes as the parameter g
changes.

c. Use the envelope theorem to answer part (b) directly.

d. On the Earth g = 32, but this value varies somewhat around the globe. If two locations had
gravitational constants that differed by 0.1, what would be the difference in the maximum
height of a ball tossed in the two places?

2.6

A simple way to model the construction of an oil tanker is to start with a large rectangular sheet of steel
that is x feet wide and 3x feet long. Now cut a smaller square that is # feet on a side out of each corner of
the larger sheet and fold up and weld the sides of the steel sheet to make a traylike structure with no top.

a. Show that the volume of oil that can be held by this tray is given by

V = t(x — 2¢)(3x — 2¢) = 3tx? — 8%x + 445
b. How should # be chosen so as to maximize V for any given value of x?
c. Is there a value of x that maximizes the volume of oil that can be carried?

d. Suppose that a shipbuilder is constrained to use only 1,000,000 square feet of steel sheet to
construct an oil tanker. This constraint can be represented by the equation 3x? —41? =
1,000,000 (because the builder can return the cut-out squares for credit). How does the
solution to this constrained maximum problem compare to the solutions described in parts

(b) and (c)?

2.7

Consider the following constrained maximization problem:

maximize y=x, +5Inx,
subject to k—x; —x, =0,

where % is a constant that can be assigned any specific value.
a. Show that if £ = 10, this problem can be solved as one involving only equality constraints.
b. Show that solving this problem for % = 4 requires that x, = —1.
c. Ifthe «’s in this problem must be nonnegative, what is the optimal solution when % = 4?
d. What is the solution for this problem when % = 20? What do you conclude by comparing this

solution to the solution for part (a)?

Note: This problem involves what is called a “quasi-linear function.” Such functions provide important
examples of some types of behavior in consumer theory—as we shall see.

2.8
Suppose that a firm has a marginal cost function given by MC(g) = g4 + 1.

a. Whatis this firm’s total cost function? Explain why total costs are known only up to a constant of
integration, which represents fixed costs.

b. As you may know from an earlier economics course, if a firm takes price (p) as given in its
decisions then it will produce that output for which p = MC(yg). If the firm follows this profit-
maximizing rule, how much will it produce when p = 15? Assuming that the firm is just
breaking even at this price, what are fixed costs?
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¢. How much will profits for this firm increase if price increases to 202

d. Show that, if we continue to assume profit maximization, then this firm’s profits can be
expressed solely as a function of the price it receives for its output.

e. Show that the increase in profits from p = 15 to p = 20 can be calculated in two ways: (i)
directly from the equation derived in part (d); and (ii) by integrating the inverse marginal cost
function [MC~1(p) = p — 1] from p = 15 to p = 20. Explain this result intuitively using the
envelope theorem.

Analytical Problems

2,9 Concave and quasi-concave functions

Show that if f(x,x,) is a concave function then it is also a quasi-concave function. Do this by
comparing Equation 2.114 (defining quasi-concavity) to Equation 2.98 (defining concavity). Can
you give an intuitive reason for this result? Is the converse of the statement true? Are quasi-concave
functions necessarily concave? If not, give a counterexample.

2,10 The Cobb-Douglas function

One of the most important functions we will encounter in this book is the Cobb-Douglas function:
J= (x1)u(xz)ﬁ»

where « and B are positive constants that are each less than 1.

a. Show that this function is quasi-concave using a “brute force” method by applying Equa-
tion 2.114.

b. Show that the Cobb-Douglas function is quasi-concave by showing that any contour line of the
form y = ¢ (where ¢ is any positive constant) is convex and therefore that the set of points for
which y > ¢ is a convex set.

c. Show that if @ + B > 1 then the Cobb-Douglas function is not concave (thereby illustrating
again that not all quasi-concave functions are concave).

Note: The Cobb-Douglas function is discussed further in the Extensions to this chapter.

2.11 The power function

Another function we will encounter often in this book is the “power function”:

S
y=x,

where 0 < 8 <1 (at times we will also examine this function for cases where 8 can be negative, too, in

which case we will use the form y = x°/8 to ensure that the derivatives have the proper sign).

a. Show that this function is concave (and therefore also, by the result of Problem 2.9, quasi-concave).
Notice that the 8 = 1 is a special case and that the function is “strictly” concave only for 8 < 1.

b. Show that the multivariate form of the power function
5 5
y=Ff(x%,%) = ()" + (%)
is also concave (and quasi-concave). Explain why, in this case, the fact that £}, = f;; = 0 makes
the determination of concavity especially simple.
¢. One way to incorporate “scale” effects into the function described in part (b) is to use the
monotonic transformation

g%y, %) =y = [(xl)a + (xz)ap’

where vy is a positive constant. Does this transformation preserve the concavity of the function?
Is g quasi-concave?

77
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2.12 Taylor approximations

Taylor’s theorem shows that any function can be approximated in the vicinity of any convenient point
by a series of terms involving the function and its derivatives. Here we look at some applications of the
theorem for functions of one and two variables.

a.

b.

Any continuous and differentiable function of a single variable, f(x), can be approximated near
the point 2 by the formula

fx)=f(a)+f(a)(x—a)+05f"(a)(x— a)z + terms in f, f", ...

Using only the first three of these terms results in a quadratic Taylor approximation. Use this
approximation together with the definition of concavity given in Equation 2.85 to show that
any concave function must lie on or below the tangent to the function at point a.

The quadratic Taylor approximation for any function of two variables, £(x, y), near the point
(a,b) is given by

flx,9) = f(a,0) + fi(a,0)(x — ) + f(a,b)(y = )
+0.5[f1(a,6)(x — 2)* + 2f15(a,b)(x — 2)(y = b) + fo,(y = b)°].

Use this approximation to show that any concave function (as defined by Equation 2.98) must
lie on or below its tangent plane at (a, b).

2.13 More on expected value

Because the expected value concept plays an important role in many economic theories, it may be useful
to summarize a few more properties of this statistical measure. Throughout this problem, x is assumed
to be a continuous random variable with probability density function £(x).

a.

(Jensen’s inequality) Suppose that g(x) is a concave function. Show that E[ g(x)] < g[E(x)].
Hint: Construct the tangent to g(x) at the point E(x). This tangent will have the form
¢+ dx > g(x) for all values of x and ¢ + dE(x) = g[E(x)] where ¢ and 4 are constants.
. Use the procedure from part (a) to show that if g(x) is a convex function then E[g(x)] >
J[E(x)].
. Suppose x takes on only nonnegative values—that is, 0 < x <o, Use integration by parts to
show that
B = [[1- P as,
0
where F(x) is the cumulative distribution function for x [that is, F(x) = [§ £(¢) dz].
. (Markov’s inequality) Show that if x takes on only positive values then the following inequality
holds:
Px>1) < @
Hint: E(x) = [§ xf (x) dx = [§ xf (x) dx + [7 xf (x) du.
. Consider the probability density function f(x) = 2x~3 for & > 1.
(1) Show that this is a proper PDF.
(2) Calculate F(x) for this PDF.
(3) Use the results of part (c) to calculate E(x) for this PDF.
(4) Show that Markov’s inequality holds for this function.
The concept of conditional expected value is useful in some economic problems. We denote the

expected value of x conditional on the occurrence of some event, 4, as E(x|A). To compute this
value we need to know the PDF for x given that A4 has occurred [denoted by (x| A4)]. With this
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notation, E(x|A) = [7 xf (x| A) dx. Perhaps the easiest way to understand these relationships

is with an example. Let

for

1) Show that this is a proper PDF.
2) Calculate E(x).

)
)
3) Calculate the probability that —1 < x < 0.
)
5) Calculate E(x|A).

)

6) Explain your results intuitively.

2.14 More on variances and covariances

-1 <x<2.

(
(
(
(4) Consider the event 0 < x < 2, and call this event A. What is f(x|A)?
(
(

This problem presents a few useful mathematical facts about variances and covariances.

a. Show that Var(x) = E(x?) — [E(x)]*.

b. Show that the result in part (a) can be generalized as Cov(x,y) = E(xy) — E(x)E(y). Note: If

Cov(x,y) = 0, then E(xy) = E(x)E(y).

c. Show that Var(ax + by) = a? Var(x) + % Var(y) + 2ab Cov(x, y).

d. Assume that two independent random variables, x and y, are characterized by E(x) = E(y)

and Var(x) = Var(y) . Show that E(0.5x+ 0.5y) =

E(x). Then use part (¢) to show that

Var(0.5x + 0.5y) = 0.5 Var(x). Describe why this fact provides the rationale for diversification

of assets.

SUGGESTIONS FOR FURTHER READING

Dadkhan, Kamran. Foundations of Mathematical and
Computational Economics. Mason, OH: Thomson/South-
Western, 2007.
This is a good introduction to many calculus techniques. The book
shows how many mathematical questions can be approached using
popular software programs such as Matlab or Excel.
Dixit, A. K. Optimization in Economic Theory, 2nd ed. New
York: Oxford University Press, 1990.
A complete and modern treatment of optimization techniques. Uses
relatively advanced analytical methods.
Hoy, Michael, John Livernois, Chris McKenna, Ray Rees,
and Thanasis Stengos. Mathematics for Economists, 2nd ed.
Cambridge, MA: MIT Press, 2001.
A complete introduction to most of the mathematics covered in
microeconomics courses. The strength of the book is its presentation
of many worked-out examples, most of which are based on micro-
economic theory.
Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.
Green. Microeconomic Theory. New York: Oxford University
Press, 1995.
Encyclopedic treatment of mathematical microeconomics. Extensive
mathematical appendices cover relatively high-level topics in analysis.

Samuelson, Paul A. Foundations of Ecomomic Analysis.
Cambridge, MA: Harvard University Press, 1947. Mathe-
matical Appendix A.

A basic reference. Mathematical Appendix A provides an advanced
treatment of necessary and sufficient conditions for a maximum.
Silberberg, E., and W. Suen. The Structure of Economics: A
Mathematical Analysis, 3rd ed. Boston: Irwin/McGraw-

Hill, 2001.
A mathematical microeconomics text that stresses the observable
predictions of economic theory. The text makes extensive use of the
envelope theorem.
Simon, Carl P., and Lawrence Blume. Mathematics for
Economists. New York: W. W. Norton, 1994.
A very useful text covering most areas of mathematics relevant to
economists. Treatment is at a relatively high level. Two topics dis-
cussed better here than elsewhere are differential equations and basic
point-set topology.
Sydsacter, K., A. Strom, and P. Berck. Economists’
Mathematical Manual, 3rd ed. Berlin: Springer-Verlag,
2000.
An indispensable tool for mathematical review. Contains 32 chapters
covering most of the mathematical tools that economists use.



80 Part 1 Introduction

Discussions are very brief, so this is not the place to encounter new
concepts for the first time.
Taylor, Angus E., and W. Robert Mann. Advanced
Calcnlus, 3rd ed. New York: John Wiley, 1983, pp. 183-95.
A comprehensive calculus text with a good discussion of the Lagrang-
ian technique.

Thomas, George B., and Ross L. Finney. Calculus and
Analytic Geometry, 8th ed. Reading, MA: Addison-Wesley,
1992.
Basic calculus text with excellent coverage of differentiation
techniques.



EXTENSIONS

Chapter 2 Mathematics for Microeconomics 81

Second-Order Conditions and Matrix Algebra

The second-order conditions described in Chapter 2
can be written in very compact ways by using matrix
algebra. In this extension, we look briefly at that nota-
tion. We return to this notation at a few other places in
the extensions and problems for later chapters.

Matrix algebra background

The extensions presented here assume some general
familiarity with matrix algebra. A succinct reminder of
these principles might include:

1. An »n X k matrix, A, is a rectangular array of
terms of the form

a5 4y ay;
Ay % Py
2,1 Ay Ay

Here i =1, n; j = 1, k. Matrices can be added,
subtracted, or multiplied providing their dimen-
sions are conformable.

2. If =k, then A is a square matrix. A square
matrix is symmetric if a;; = a;;. The identity ma-
trix, 1, is an 7z + » square matrix where a;=1
ifi=jand a; =0if i # j.

3. The determinant of a square matrix (denoted
by |A|) is a scalar (i.e., a single term) found by
suitably multiplying together all of the terms in
the matrix. If Ais 2 x 2,

Al = 21385, — a5,

1 3
5 2
A =2-15=—-13.

4. The inverse of an »n X n square matrix, A, is
another # x » matrix, A, such that

Example: If A = [ } then

A-Al=1.

n

Not every square matrix has an inverse. A
necessary and sufficient condition for the
existence of A~! is that |A| # 0.

5. The leading principal minors of an n X n square
matrix A are the series of determinants of the
first p rows and columns of A, where p = 1, »n. If

Ais 2 x 2, then the first leading principal minor
is a,; and the second is a2y, — 25,2,

6. An n X n square matrix, A, is positive definite it
all of its leading principal minors are positive.
The matrix is negative definite if its principal
minors alternate in sign starting with a minus.'

7. A particularly useful symmetric matrix is the
Hessian matrix tormed by all of the second-
order partial derivatives of a function. If f is a
continuous and twice differentiable function of
n variables, then its Hessian is given by

;:11 Jjju ?n
H(f) _ 2:1 22 - 2n
fnl fn2 fnn

Using these notational ideas, we can now exam-
ine again some of the second-order conditions
derived in Chapter 2.

E2.1 Concave and convex functions

A concave function is one that is always below (or on)
any tangent to it. Alternatively, a convex function is
always above (or on) any tangent. The concavity or
convexity of any function is determined by its second
derivative(s). For a function of a single variable, f(x),
the requirement is straightforward. Using the Taylor
approximation at any point ()

dx?
f (%9 + dx) = f(x) + f' (o) A +f”(x0)7
+ higher-order terms.

Assuming that the higher-order terms are 0, we have
f(xg + dx) < f(x) + f' (%) dec

if f”(x,) < 0 and
f (% + d) > f (%) + f' (9) e

it f"(x,) > 0. Because the expressions on the right of

these inequalities are in fact the equation of the
tangent to the function at x,, it is clear that the

'If some of the determinants in this definition are 0 then the matrix is
said to be positive semidefinite or negative semidefinite.
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function is (locally) concave if f”(x,) <0 and
(locally) convex if f”(x,) > 0.

Extending this intuitive idea to many dimensions is
cumbersome in terms of functional notation, but rela-
tively simple when matrix algebra is used. Concavity
requires that the Hessian matrix be negative definite
whereas convexity requires that this matrix be positive
definite. As in the single variable case, these conditions
amount to requiring that the function move consis-
tently away from any tangent to it no matter what
direction is taken.?

It (%, ,) is a function of two variables, the Hes-
sian is given by

- |

This is negative definite if
Su <0 and fi,fp, — 5112 >0,

which is precisely the condition described in Equa-
tion 2.98. Generalizations to functions of three or
more variables follow the same matrix pattern.

el

Example 1
For the health status function in Chapter 2 (Equa-
tion 2.20), the Hessian is given by

-2 0
[ 5)
and the first and second leading principal minors are

H,=-2<0 and
H, =(-2)(-2)-0=4>0.

Hence, the function is concave.

Example 2

The Cobb-Douglas function x”y* where a,4 € (0,1)
is used to illustrate utility functions and production
functions in many places in this text. The first- and
second-order derivatives of the function are

fo=ax""1y",

f;, — hx"y”‘l,
foo=0a(a—1)x"2y"
Sy =b(b— 1)x%y?=2.

2A proof using the multivariable version of Taylor’s approximation is
provided in Simon and Blume (1994), chap. 21.

Hence, the Hessian for this function is

a(a — 1)x"2y"

ﬂbx”flyhfl

ﬂbxuflybfl

b(b—1)x"y"2 |

The first leading principal minor of this Hessian is
H, =a(a—1)x" %" <0
and so the function will be concave, providing

H,= a(a—1)(6)(b—1)x24-2y20-2 _ g22,20-2,20-2
=ab(1—a—b)x**2y*=2 > 0.

This condition clearly holds if #+ & < 1. That is, in
production function terminology, the function must
exhibit diminishing returns to scale to be concave.
Geometrically, the function must turn downward as
both inputs are increased together.

E2.2 Maximization

As we saw in Chapter 2, the first-order conditions for
an unconstrained maximum of a function of many
variables requires finding a point at which the partial
derivatives are zero. If the function is concave it will be
below its tangent plane at this point and therefore the
point will be a true maximum.® Because the health
status function is concave, for example, the first-
order conditions for a maximum are also sufficient.

E2.3 Constrained maxima

When the x’s in a maximization or minimization prob-
lem are subject to constraints, these constraints have to
be taken into account in stating second-order condi-
tions. Again, matrix algebra provides a compact (if not
very intuitive) way of denoting these conditions. The
notation involves adding rows and columns of the
Hessian matrix for the unconstrained problem and
then checking the properties of this augmented matrix.
Specifically, we wish to maximize

e

subject to the constraint*

%,

J(%p,...,%,) =0.

3This will be a “local” maximum if the function is concave only in a
region, or “global” if the function is concave everywhere.

*Here we look only at the case of a single constraint. Generalization to
many constraints is conceptually straightforward but notationally com-
plex. For a concise statement see Sydsaeter, Strom, and Berck (2000),
p.93.



We saw in Chapter 2 that the first-order conditions
for a maximum are of the form

ﬁ+)\ﬂ,:0,

where \ is the Lagrangian multiplier for this problem.
Second-order conditions for a maximum are based on
the augmented (“bordered”) Hessian®

0 5 & I

a5 M he fin

H, = G b1 S fon
gn fnl fnZ fnn

For a maximum, (—1)H}, must be negative definite—
that is, the leading principal minors of Hy, must follow
the pattern — + — + — and so forth, starting with the
second such minor.°

The second-order conditions for minimum require
that (—1)H, be positive definite—that s, all of the lead-
ing principal minors of Hy, (except the first) should be
negative.

Example
The Lagrangian for the constrained health status prob-
lem (Example 2.6) is

P=—x3+2m —x5+4%, +5+ N1 —x —x,),

and the bordered Hessian for this problem is

0 -1 -1
H=|-1 -2 0
-1 0 -2
The second leading principal minor here is
[0 -1
Hp=| ) |=-L
and the third is
0o -1 -1
H;=|-1 -2 0
-1 0 -2

0+0+0—(—2)—0—(-2)=4,

so the leading principal minors of the Hy have the
required pattern and the point

x =1 % =0,

is a constrained maximum.

*Notice that, if g;; = 0 for all 7 and j, then Hy, can be regarded as the
simple Hessian associated with the Lagrangian expression given in

Equation 2.50, which is a function of the 7 + 1 variables \, x;, ..., x,.

“Notice that the first leading principal minor of Hy, is 0.
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Example
In the optimal fence problem (Example 2.7), the bor-
dered Hessian is

o -2 -2
H, =|-2 0 1
-2 1 0
and
Hy, = —4,
H,; = 8,

so again the leading principal minors have the sign
pattern required for a maximum.

E2.4 Quasi-concavity

If the constraint g is linear, then the second-order
conditions explored in Extension 2.3 can be related
solely to the shape of the function to be optimized, f.
In this case the constraint can be written as

J(x,..%,) =c—byx, — by, — - —b,x, =0,

and the first-order conditions for a maximum are
f;' = \b;,

Using the conditions, it is clear that the bordered
Hessian Hy, and the matrix

i=1,....n

0 A fH - £
H = fl fll f12 fln
Lo S Fon
fn fnl fnZ fnn

have the same leading principal minors except for a
(positive) constant of proportionality.” The condi-
tions for a maximum of f* subject to a linear constraint
will be satisfied provided H' follows the same sign
conventions as Hy—that is, (—1)H’ must be negative
definite. A function f for which H' does follow this
pattern is called gquasi-concave. As we shall see, f
has the property that the set of points & for which
f(x) > ¢ (where ¢ is any constant) is convex. For such
a function, the necessary conditions for a maximum
are also sufficient.

Example
For the fences problem, f(x,y) = xy and H' is given

by

This can be shown by noting that multiplying a row (or a column) of a
matrix by a constant multiplies the determinant by that constant.
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- 0 g ch L=—(f)*<0 and
B i 1 0 5=—fufs b fi+2f6H:>0,
which is precisely the condition stated in Equa-
So tion 2.114. Hence, we have a fairly simple way of
H,=-»*<0, determining quasi-concavity.
Hj = 2xy > 0,

and the function is quasi-concave.® References

Simon, C. P., and L. Blume. Mathematics for Economists.

Example New York: W.W. Norton, 1994.
More generally, if f'is a function of only two variables, Sydsacter, R., A. Strom, and P. Berck. Economists’ Math-
then quasi-concavity requires that ematical Manual, 3rd ed. Berlin: Springer-Verlag, 2000.

8Since f(x,y) = xy is a form of a Cobb-Douglas function that is not
concave, this shows that not every quasi-concave function is concave.
Notice that a monotonic function of £ (such as £1/3) would be concave,
however.



