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A "One Line” Proof of the Slutsky Equation

By Puirre J. Cook*

One focus of the usual classroom discussion
of consumer theory is the demonstration that
the individual consumer’s reaction to a
change in the market price of a commodity
can be usefully broken down into vectors of
substitution effects and income effects. The
Slutsky equation relating the price effect to
the substitution and income effects can be
simply motivated by J. R. Hicks’ graphical
presentation, p. 31, but the usual proof (see
Paul Samuelson) is very tedious and non-
intuitive. If the instructor includes a discus-
sion of the expenditure function in his cur-
riculum, however, he has available a concise,
intuitively appealing proof of the Slutsky
equation.!

Suppose a consumer with income y faces a
vector of commodity prices p. His Marshal-
lian demand curve for commodity j is given
by x;=D(y, p). The minimum expenditure
necessary for the consumer to achieve any
utility level # is given by his expenditure
function, y=m(u, p) (here y is in units of the
jth good). His Hicksian income-compensated
demand for commodity j is represented
x;="hi(u, p); if m is differentiable, we have
the well-known result that

9
hi(u, p) = i, 9)
op;

By the way the functions are defined, we
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! The expenditure function has been analyzed by
L. McKenzie, S. Karlin, and D. McFadden and S. G.
Winter, Jr.
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have the identity
(2) hj(“: P) = Dj(m[u) P]) P)

Taking derivatives with respect to the price
p: of some commodity ¢ yields, by the com-
posite function rule:

ah](uy P) _ ‘9D7(y) P) am(”y P)

3)

where y=m(u, p). Using (1) and rearranging
terms gives us the Slutsky equation:

Dy, p) _ oh'(u, p) 9Dy, p)

4 Xy

“ dpi ap: dy

noting again that y=m(u, p).
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