|
»ý»ê ÀÌ·Ð
»ý»ê ÇÔ¼ö
- »ý»ê ÇÔ¼ö (production function) cf. È¿¿ëÇÔ¼ö (utility function)
Q = f (L, K)
- ÃÑ »ý»ê¹° / Æí±Õ »ý»ê¹° / ÇÑ°è »ý»ê¹°
³ëµ¿ÀÇ Æò±Õ »ý»ê¹° (average product of labor) APL = Q / L
³ëµ¿ÀÇ ÇÑ°è »ý»ê¹° (marginal product of labor)MPL = dQ / dL
- ¼öÈ® ü°¨ÀÇ ¹ýÄ¢ (law of diminishing returns)
ÇÑ°è »ý»ê¹° ü°¨ÀÇ ¹ýÄ¢ (law of diminishing marginal product)
µî·®¼±
- µî·®¼± (isoquant) : iso = µî, quant = ·®; cf. ¹«Â÷º° °î¼±
- ÇÑ°è ±â¼ú ´ëüÀ² (MRTS: marginal rate of technical substitution)
cf. ÇÑ°è ´ëüÀ² (MRS: marginal rate of substitution)
±Ô¸ð¿¡ µû¸¥ ¼öÈ®
- ±â¾÷ ±Ô¸ð (scale)
- ±Ô¸ð¿¡ µû¸¥ ¼öÈ® (returns to scale): üÁõ, ºÒº¯, ü°¨
f(tL, tK) > tf(L, K) ==> increasing returns to scale
f(tL, tK) = tf(L, K) ==> constant returns to scale
f(tL, tK) < tf(L, K) ==> decreasing returns to scale
- µ¿Â÷ »ý»ê ÇÔ¼ö (homogeneous production function)
trf(L, K) = f(tL, tK) ==> rÂ÷ µ¿Â÷ÇÔ¼ö (homogeneous function of dgree r)
- Cobb-Douglas »ý»êÇÔ¼ö
Q = f(L, K) = ALaKb,
where A > 0, 1 > a, b > 0
|